Six samples of geopolymer composites (GPK) with low-dimensional microfillers, microfibre glass, basalt, carbon, microsheets of mica, microspheres of ceramics and glass were prepared. The tensile and compressive strength modulus of GPK with microfillers was measured on a P100 LabTest II press and compared to a reference sample of a non-microfillers geopolymer in order to compare the effect of the microfillers on the mechanical properties. In the same way, the tensile strength and pressure modulus of GPK with surface modified microfillers was designed to increase the adhesion of the microfillers to the geopolymer matrix. The measured values of tensile strength and pressure modulus of GPK were compared with unmodified and surface-modified reactive groups. The thermal conductivity coefficient of GPK with microfillers was measured by a direct method on the ISOMET 2014 instrument and compared to a reference sample of a non-microfillers geopolymer, in order to compare the effect of the microfillers on the thermal properties of GPK. In the same way, the thermal conductivity coefficient of GPK with surface modified microfillers was measured in order to increase the adhesion of the microfillers to the geopolymer matrix. The measured values of the GPK thermal conductivity coefficient were compared with unmodified and surface-modified microfillers. The bulk weight of the GPK samples was calculated from the measured sample weight and size and compared to the reference sample of a non-microfillers geopolymer to compare the effect of the microfillers on the GPK density. The measured GPK density values were compared with unmodified and surface-modified microfillers. Micrograph GPK digital photomicrography documented homogeneity of surface and volume of prepared samples. Nanomorphology of modified microfillers, shown by scanning electron microscopy, allowed analysis of the influence of roughness, roundness and smoothness of the samples on adhesion. and Bylo připraveno 6 vzorků geopolymerních kompozitů (GPK) s nízkorozměrnými mikroplnivy, mikrovlákny skla, čediče, uhlíku, mikrodeskami slídy, mikrosférami z keramiky a skla. Modul pevnosti v tahu a tlaku GPK s mikroplnivy byl změřen na lisu P100 LabTest II a porovnán s referenčním vzorkem geopolymeru bez mikroplniv, s cílem porovnat vliv mikroplniva na mechanické vlastnosti. Stejným způsobem byl změřen modul pevnosti v tahu a tlaku GPK s povrchově modifikovanými mikroplnivy s cílem zvýšení adheze mikroplniva ke geopolymerní matrici. Byly porovnány změřené hodnoty modulu pevnosti v tahu a tlaku GPK s mikroplnivy nemodifikovanými a povrchově modifikovanými reaktivními skupinami. Součinitel tepelné vodivosti GPK s mikroplnivy byl změřen přímou metodou na přístroji ISOMET 2014 a porovnán s referenčním vzorkem geopolymeru bez mikroplniv, s cílem porovnat vliv mikroplniva na tepelné vlastnosti GPK. Stejným způsobem byl změřen součinitel tepelné vodivosti GPK s povrchově modifikovanými mikroplnivy s cílem zvýšení adheze mikroplniva ke geopolymerní matrici. Byly porovnány změřené hodnoty součinitele tepelné vodivosti GPK s mikroplnivy nemodifikovanými a povrchově modifikovanými. Objemová hmotnost vzorků GPK byla vypočtena ze změřené hmotnosti a rozměrů vzorků a porovnána s referenčním vzorkem geopolymeru bez mikroplniv, s cílem porovnat vliv mikroplniva na hustotu GPK. Byly porovnány změřené hodnoty hustoty GPK s mikroplnivy nemodifikovanými a povrchově modifikovanými. Digitální mikrofotografie GPK s mikroplnivy dokumentovala homogenitu povrchu a objemu připravených vzorků. Nanomorfologie modifikovaných mikroplniv, zobrazená rastrovacím elektronovým mikroskopem, umožnila analýzu vlivu drsnosti, kulatosti a hladkosti vzorků na adhezi.
Six samples of foam geopolymer composites (GPK) with low-dimensional microfillers, microfibre glass, basalt, carbon, microsheets of mica, microspheres of ceramics and glass were prepared. The tensile and compressive strength modulus of GPK with microfillers was measured on a P100 LabTest II press and compared to a reference sample of a non-microfillers geopolymer in order to compare the effect of the microfillers on the mechanical properties. In the same way, the tensile strength and pressure modulus of GPK with surface modified microfillers was designed to increase the adhesion of the microfillers to the geopolymer matrix. The measured values of tensile strength and pressure modulus of GPK were compared with unmodified and surface-modified reactive groups. The thermal conductivity coefficient of GPK with microfillers was measured by a direct method on the ISOMET 2014 instrument and compared to a reference sample of a nonmicrofillers geopolymer, in order to compare the effect of the microfillers on the thermal properties of GPK. In the same way, the thermal conductivity coefficient of GPK with surface modified microfillers was measured in order to increase the adhesion of the microfillers to the geopolymer matrix. The measured values of the GPK thermal conductivity coefficient were compared with unmodified and surface-modified microfillers. The bulk weight of the GPK samples was calculated from the measured sample weight and size and compared to the reference sample of a non-microfillers geopolymer to compare the effect of the microfillers on the GPK density. The measured GPK density values were compared with unmodified and surface-modified microfillers. Micrograph GPK digital photomicrography documented homogeneity of surface and volume of prepared samples. Nanomorphology of modified microfillers, shown by scanning electron microscopy, allowed analysis of the influence of roughness, roundness and smoothness of the samples on adhesion. and Bylo připraveno 6 vzorků pěnových geopolymerních kompozitů (GPK) s nízkorozměrnými mikroplnivy, mikrovlákny skla, čediče, uhlíku, mikrodeskami slídy, mikrosférami z keramiky a skla. Modul pevnosti v tahu a tlaku GPK s mikroplnivy byl změřen na lisu P100 LabTest II a porovnán s referenčním vzorkem geopolymeru bez mikroplniv, s cílem porovnat vliv mikroplniva na mechanické vlastnosti. Stejným způsobem byl modul pevnosti v tahu a tlaku GPK s povrchově modifikovanými mikroplnivy s cílem zvýšení adheze mikroplniva ke geopolymerní matrici. Byly porovnány změřené hodnoty modulu pevnosti v tahu a tlaku GPK s mikroplnivy nemodifikovanými a povrchově modifikovanými reaktivními skupinami. Součinitel tepelné vodivosti GPK s mikroplnivy byl změřen přímou metodou na přístroji ISOMET 2014 a porovnán s referenčním vzorkem geopolymeru bez mikroplniv, s cílem porovnat vliv mikroplniva na tepelné vlastnosti GPK. Stejným způsobem byl změřen součinitel tepelné vodivosti GPK s povrchově modifikovanými mikroplnivy s cílem zvýšení adheze mikroplniva ke geopolymerní matrici. Byly porovnány změřené hodnoty součinitele tepelné vodivosti GPK s mikroplnivy nemodifikovanými a povrchově modifikovanými. Objemová hmotnost vzorků GPK byla vypočtena ze změřené hmotnosti a rozměrů vzorků a porovnána s referenčním vzorkem geopolymeru bez mikroplniv, s cílem porovnat vliv mikroplniva na hustotu GPK. Byly porovnány změřené hodnoty hustoty GPK s mikroplnivy nemodifikovanými a povrchově modifikovanými. Digitální mikrofotografie GPK s mikroplnivy dokumentovala homogenitu povrchu a objemu připravených vzorků. Nanomorfologie modifikovaných mikroplniv, zobrazená rastrovacím elektronovým mikroskopem, umožnila analýzu vlivu drsnosti, kulatosti a hladkosti vzorků na adhezi.
Geopolymers are one of the modern materials that can replace Portland cement. These materials are characterized by both high strength and high heat resistance. Foam geopolymers provide thermal protection. Foamed geopolymers with coke dust fill at 3 % relative to the base geopolymer (binder) and hollow corundum microspheres at 1 % and 3 % relative to the binder were examined. Compressive strength was found to be most affected by the addition of 3 % corundum hollow spheres. For flexural strength, this cannot be unequivocally demonstrated, as foamed geopolymers are themselves brittle and strengths with 5 % coke dust and 3 % corundum take place within statistical uncertainty. and Geopolymery jsou jedny z aktuálních materiálů, kterými je možno nahradit portlandský cement. Tyto materiály se vyznačují jak vysokou pevností, tak vysokou žárovou odolností. Tepelnou ochranu poskytují vypěněné geopolymery, které byly zkoumány s výplní z koksového prachu v množství 5 % vzhledem k základnímu geopolymeru (binderu) a dutých korundových mikrokuliček v množství 1 % a 3 % vzhledem k binderu. Bylo zjištěno, že pevnost v tlaku nejvíce ovlivňuje přidání 3 % korundových dutých kuliček. U pevnosti v ohybu toto nelze jednoznačně prokázat, protože vypěněné geopolymery jsou samy o sobě křehké a pevnosti s 5 % koksového prachu a 3 % korundu se odehrávají v rámci statistické nejistoty.
This paper presents an experimental investigation on the bending strength behavior of textile reinforced geopolymer based composite. Specimens reinforced with one to three textile layers and non-reinforced specimens were molded in the rectangular form with the dimension of 400×100×15 mm3 . Four-point bending test, with a constant span of 100 mm, was conducted to determine the bending strength behavior of the hardened specimens at approximately 28 days after casting. The experimental results confirmed that there is a strong relationship between carbon textile and flexural strength of the specimens, of course it is expected, and the variability of the flexural strength is increased respect to the number of textile layers. Reinforced specimens provide a high stiffness, high bearing capacity and pseudo-ductile behavior, which ensure that makes different as compared to the non-reinforced specimens., Článek představuje výsledky experimentálního výzkumu při hodnocení pevnosti v ohybu zpevněného kompozitu na bázi geopolymeru. Vzorky byly připraveny ve formě hranolu o rozměru 400 × 100 × 15 mm3 jak ve zpevněném stavu s jednou až třemi vrstvami textilií, tak i bez výztuže. Čtyřbodová ohybová zkouška se vzdáleností podpěr 100 mm pro stanovení pevnosti v ohybu byla provedena 28 dnů po odlití vzorků. Experimentální výsledky potvrzují závislost mezi počtem přidaných vrstev uhlíkové textilie a pevností v ohybu u zkoumaných vzorků. Zpevněné vzorky se projevují vyšší tuhostí a pevností oproti vzorkům bez výztuže., and Dokončení článku v příštím čísle