This paper presents closed form solution for unsteady flow equation corresponding to the transient hydraulic head, flow rate and volumetric exchange of a confined aquifer which is in contact with a constant piezometric head at one end and a stream whose water level is rising at a constant rate at the other end. The aquifer is also subjected to receive constant inflow due to rain infiltration. The unsteady groundwater flow equation is solved using Laplace transform to get analytical expressions for the transient hydraulic head and flow rate at the left and right interfaces and the net volumetric exchange of water at the aquifer-stream interface. The analytical results presented here show the effect of recharge due to rain infiltration on the net volumetric exchange and reveal the conditions for which net inflow in the aquifer could be positive, negative or zero. The results obtained have the capability to determine transient hydraulic head for two extreme scenarios: (i) very slow rise and (ii) very fast rise in the stream water. Analytical result show that the net volumetric exchange could be positive, zero or negative depending on the surface infiltration and stream water rise rate. and Príspevok obsahuje analytické riešenie rovnice neustáleného prúdenia vzhľadom na neustálenú hydraulickú výšku, rýchlosť prúdenia a objemové toky vo zvodnenom kolektore s napätou hladinou, ktorý je v kontakte s konštantnou piezometrickou výškou na jednej strane a s tokom s konštantne sa zvyšujúcou hladinou vody na strane druhej. Zvodnený kolektor je tiež napájaný konštantnou rýchlosťou infiltrovanou vodou zo zrážok. Rovnica neustáleného prúdenia podzemnej vody je riešená s použitím Laplaceovej transformácie, aby sme získali neustálenú tlakovú výšku na ľavej aj pravej strane a objemový prítok vody na rozhraní zvodnený kolektor - tok. Výsledky analytického riešenia, ktoré predkladáme, ukazujú vplyv infiltrácie zrážok na doplňovanie podzemnej vody a odhaľujú podmienky, za ktorých prítok do zvodneného kolektora môže byť kladný, negatívny, alebo nulový. Získané výsledky umožňujú určiť neustálené hydraulické výšky pre dva extrémne scenáre: (i) veľmi pomalé a (ii) veľmi rýchle zvýšenie hladiny vody v toku. Analytické riešenie ukazuje, že objem vody, ktorou je zvodnený kolektor doplňovaný, môže byť kladný, záporný, alebo nulový, v závislosti na intenzite infiltrácie a rýchlosti zvyšovania sa hladiny vody v toku.
Knowing the extent of inundation areas for individual N-year flood events, the specific flood scenarios, and having an idea about the depths and velocities in the longitudinal or transverse water course profile provided by hydrodynamic models is of key importance for protecting peoples’ lives and mitigating damage to property. Input data for creating the watercourse computational geometry are crucial for hydrodynamic models. Requirements for input data vary with respect to the hydrodynamic model used. One-dimensional (1D) hydrodynamic models in which the computing track is formed by cross-sectional profiles of the channel are characterized by lower requirements for input data. In two-dimensional (2D) hydrodynamic models, a digital terrain model is needed for the entire area studied. Financial requirements of the project increase with regard to the input data and the model used. The increase is mainly due to the high cost of the geodetic surveying of the stream channel. The paper aims at a verification and presentation of the suitability of using hydrological measurements in developing a schematization (geometry) of water courses based on topographic data gained from aerial laser scanning provided by the Czech Office for Surveying, Mapping and Cadastre. Taking into account the hydrological measurement during the schematization of the water course into the hydrodynamic model consists in the derivation of flow rate achieved at the time of data acquisition using the method of aerial laser scanning by means of hydrological analogy and in using the established flow rate values as a basis for deepening of the digital terrain model from aerial laser scanning data. Thus, the given principle helps to capture precisely the remaining part of the channel profile which is not reflected in the digital terrain model prepared by the method of aerial laser scanning and fully correct geometry is achieved for the hydrodynamic model. and Znalost rozsahu záplavových území pro jednotlivé N-leté povodňové události a konkrétní povodňové scénáře, včetně získané představy o hloubkách a rychlostech v podélném či příčném profilu vodního toku, které poskytují hydrodynamické modely, zaujímá výsadní postavení z pohledu ochrany životů a zmírnění škod na majetku občanů. Stěžejním faktorem pro tvorbu hydrodynamických modelů jsou vstupní data pro vytvoření výpočetní geometrie vodního toku. Požadavky na vstupní data se liší s ohledem na použitý hydrodynamický model. Jednorozměrné (1D) hydrodynamické modely se vyznačují nižšími požadavky na vstupní data, kdy výpočetní trať je tvořena příčnými profily koryta, naproti tomu u dvourozměrných (2D) hydrodynamických modelů je nutné sestavit pro celé řešené území digitální model reliéfu. S ohledem na vstupní data a použitý model roste i finanční náročnost celého projektu. Nárůst finančních prostředků je způsoben především vysokými náklady na geodetické zaměření koryta toku. Cílem příspěvku bylo ověřit a prezentovat vhodnost využití hydrologického měření při tvorbě schematizace (geometrie) vodních toků na podkladě výškopisných dat získaných metodou leteckého laserového skenování, které zabezpečuje Český úřad zeměměřický a katastrální. Zohlednění hydrologického měření při schematizaci vodního toku do hydrodynamického modelu spočívá v odvození dosaženého průtoku v době pořizování dat metodou leteckého laserového skenování a takto stanovené průtoky lze využít jako podklad pro zahloubení digitálního modelu reliéfu připraveného z dat leteckého laserového skenování. Daný princip tak nahrazuje zbývající část profilu koryta, která není metodou leteckého laserového skenování v digitálním modelu reliéfu reflektována. Je tak dosaženo požadované geometrie koryta vodního toku, jehož kapacita je shodná s hodnotou průtoku v přirozeném korytě.
Link-capacity functions are the relationships between the fundamental traffic variables like travel time and the flow rate. These relationships are important inputs to the capacity-restrained traffic assignment models. This study investigates the prediction of travel time as a function of several variables V/C (flow rate/capacity), retail activity, parking, number of bus stops and link type. For this purpose, the necessary data collected in Izmir, Turkey are employed by Artificial Neural Networks (ANNs) and Regression-based models of multiple linear regression (MLR) and multiple non-linear regression (MNLR). In ANNs modelling, 70% of the whole dataset is randomly selected for the training, whereas the rest is utilized in testing the model. Similarly, the same training dataset is employed in obtaining the optimal values of the coefficients of the regression-based models. Although all of the variables are used in the input vector of the models to predict the travel time, the most significant independent variables are found to be V/C and retail activity. By considering these two significant input variables, ANNs predicted the travel time with the correlation coefficient R = 0.87 while this value was almost 0.60 for the regression-based models.