In this paper, the finite-time stabilization problem of chained form systems with parametric uncertainties is investigated. A novel switching control strategy is proposed for adaptive finite-time control design with the help of Lyapunov-based method and time-rescaling technique. With the proposed control law, the uncertain closed-loop system under consideration is finite-time stable within a given settling time. An illustrative example is also given to show the effectiveness of the proposed controller.
This paper presents a composite controller that combines nonlinear disturbance observer and second order sliding mode controller for attitude tracking of flexible spacecraft. First, a new nonsingular sliding surface is introduced. Then, a second order sliding mode attitude controller is designed to achieve high-precision tracking performance. An extended state observer is also developed to estimate the total disturbance torque consisting of environmental disturbances, system uncertainties and flexible vibrations. The estimated result is used as feed-forward compensation. Although unknown bounded disturbances, inertia uncertainties and the coupling effect of flexible modes are taken into account, the resulting control method offers robustness and finite time convergence of attitude maneuver errors. Finite-time stability for the closed-loop system is rigorously proved using the Lyapunov stability theory. Simulation results are presented to demonstrate the effectiveness and robustness of the proposed control scheme.