Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.
In a recent paper (Diversity in Monoids, Czech. Math. J. 62 (2012), 795–809), the last two authors introduced and developed the monoid invariant “diversity” and related properties “homogeneity” and “strong homogeneity”. We investigate these properties within the context of inside factorial monoids, in which the diversity of an element counts the number of its different almost primary components. Inside factorial monoids are characterized via diversity and strong homogeneity. A new invariant complementary to diversity, height, is introduced. These two invariants are connected with the well-known invariant of elasticity.
Let $M$ be a (commutative cancellative) monoid. A nonunit element $q\in M$ is called almost primary if for all $a,b\in M$, $q\mid ab$ implies that there exists $k\in \mathbb {N}$ such that $q\mid a^k$ or $q\mid b^k$. We introduce a new monoid invariant, diversity, which generalizes this almost primary property. This invariant is developed and contextualized with other monoid invariants. It naturally leads to two additional properties (homogeneity and strong homogeneity) that measure how far an almost primary element is from being primary. Finally, as an application the authors consider factorizations into almost primary elements, which generalizes the established notion of factorization into primary elements.
A symmetric positive semi-definite matrix A is called completely positive if there exists a matrix B with nonnegative entries such that A = BB^{\top }. If B is such a matrix with a minimal number p of columns, then p is called the cp-rank of A. In this paper we develop a finite and exact algorithm to factorize any matrix A of cp-rank 3. Failure of this algorithm implies that A does not have cp-rank 3. Our motivation stems from the question if there exist three nonnegative polynomials of degree at most four that vanish at the boundary of an interval and are orthonormal with respect to a certain inner product., Jan Brandts, Michal Křížek., and Obsahuje seznam literatury
In this paper we study the relationship between one-sided reverse Hölder classes $RH_r^+$ and the $A_p^+$ classes. We find the best possible range of $RH_r^+$ to which an $A_1^+$ weight belongs, in terms of the $A_1^+$ constant. Conversely, we also find the best range of $A_p^+$ to which a $RH_\infty ^+$ weight belongs, in terms of the $RH_\infty ^+$ constant. Similar problems for $A_p^+$, $1<p<\infty $ and $RH_r^+$, $1<r<\infty $ are solved using factorization.
We first investigate factorizations of elements of the semigroup $S$ of upper triangular matrices with nonnegative entries and nonzero determinant, provide a formula for $\rho (S)$, and, given $A\in S$, also provide formulas for $l(A)$, $L(A)$ and $\rho (A)$. As a consequence, open problem 2 and problem 4 presented in N. Baeth et al. (2011), are partly answered. Secondly, we study the semigroup of upper triangular matrices with only positive integral entries, compute some invariants of such semigroup, and also partly answer open Problem 1 and Problem 3 in N. Baeth et al. (2011).