Given a domain $\Omega $ of class $C^{k,1}$, $k\in \Bbb N $, we construct a chart that maps normals to the boundary of the half space to normals to the boundary of $\Omega $ in the sense that $(\partial- {\partial x_n})\alpha (x',0)= - N(x')$ and that still is of class $C^{k,1}$. As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to $k$ on domains of class $C^{k,1}$. The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights.
We prove some extension theorems involving uniformly continuous maps of the universal Urysohn space. As an application, we prove reconstruction theorems for certain groups of autohomeomorphisms of this space and of its open subsets.