Based on light and electron microscopical studies, a new nematode parasite, Echinocephalus inserratus sp. n. (Spirurida: Gnathostomatidae), is described from the spiral valve of the broad cowtail stingray Pastinachus ater (Macleay) (Dasyatidae, Myliobatiformes) from off New Caledonia. The new species is morphologically and biometrically most similar to Echinocephalus overstreeti Deardorff et Ko, 1983, differing from it mainly in the absence of serrations on the posterior parts of pseudolabia and on interlabia, and in having a longer gubernaculum (150-299 µm long). Morphologically unidentifiable, mostly encapsulated larvae of Echinocephalus spp. were recorded from the following six species of teleost fishes collected in New Caledonian waters, serving as paratenic hosts: Perciformes: Acanthopagrus berda (Forsskål) (Sparidae) and Nemipterus furcosus (Valenciennes) (Nemipteridae); Tetraodontiformes: Abalistes stellatus (Anonymous), Pseudobalistes fuscus (Bloch et Schneider) (both Balistidae), Lagocephalus sceleratus (Gmelin) (Tetraodontidae) and Aluterus monoceros (Linnaeus) (Monacanthidae). Co-parasitising larvae of Ascarophis sp. and Hysterothylacium sp. were also collected from P. fuscus. All these findings represent new host and geographical records. A key to valid species of Echinocephalus Molin, 1858 is provided.
The examination of eight spotted skates, Raja straeleni Poll, resulted in the discovery of four new species of Acanthobothrium van Beneden, 1849, namely A. microhabentes sp. n., A. microtenuis sp. n., A. crassus sp. n., and A. dolichocollum sp. n., located off the Western Cape of South Africa. With a total of over 200 valid species of Acanthobothrium recognised worldwide, the use of an integrative approach becomes imperative in the interest of simplifying interspecific comparisons between congeners. In accordance with this, the four new species were incorporated into the category classification system established by Ghoshroy and Caira in 2001, where they were identified as category 2 species, which, at present, includes 47 recognised species of Acanthobothrium. Nevertheless, each of the four new species exhibits postovarian testes, a most intriguing and highly unusual feature among Acanthobothrium, instantly differentiating them from most congeners. This feature has been reported in 12 congeners, which have previously been considered to be restricted to waters of the Indo-Pacific Ocean. Not only do the four new congeners represent the first species of Acanthobothrium reported from southern Africa, but they also represent the first reported species with postovarian testes from the southern Atlantic Ocean. and Regarding the legitimacy of the four new species, only two other category 2 species are reported to exhibit this feature, namely A. popi Fyler, Caira et Jensen, 2009, and A. bobconniorum Fyler et Caira, 2010, to which the four congeners were compared to. Acanthobothrium microhabentes sp. n. is the smallest of the congeners and differs from A. popi and A. bobconniorum by having fewer testes and postovarian testes, a shorter body, fewer proglottids, a shorter scolex, and longer cephalic peduncle. Acanthobothrium microtenuis sp. n. differs from A. popi and A. bobconniorum by having fewer testes and postovarian testes, a shorter scolex, longer cephalic peduncle, and the possession of columnar spinitriches on the anterior region of the terminal proglottid. Acanthobothrium crassus sp.n. differs from A. popi and A. bobconniorum by having fewer postovarian testes, a narrower cirrus-sac, larger vitelline follicles, and a longer cephalic peduncle. Acanthobothrium dolichocollum sp. n. is the longest of the four new species and differs from A. popi and A. bobconniorum by having fewer postovarian testes, more postporal testes, a larger body, more proglottids, larger testes and vitelline follicles, and an exceptionally long cephalic peduncle. Apart from differences in overall size, the four new species differ in a combination of measurements for the scolex, vitelline follicles, muscular pad and cephalic peduncle, and the number of proglottids and testes. The four species were recovered from a previously unexplored host and locality, expanding the host associations and geographical distribution of the genus.
Two new species of two genera of the order Diphyllidea van Beneden in Carus, 1863, Halysioncum Caira, Marques, Jensen, Kuchta et Ivanov, 2013 and Echinobothrium van Beneden, 1849 sensu stricto are described from Aetomylaeus cf. nichofii (Bloch et Schneider) off the Iranian coast of the Persian Gulf. Halysioncum kishiense sp. n. differs from all other congeners in the number of apical hooks with the exception of H. hoffmanorum (Tyler, 2001) and H. pigmentatum (Ostrowski de Núñez, 1971). Halysioncum kishiense sp. n. can be easily differentiated from H. hoffmanorum and H. pigmentatum by the number of hooklets and testis numbers. Echinobothrium parsadrayaiense sp. n. is differentiated from all its congeners except for E. acanthinophyllum Rees, 1961 by its hook formula. The number of spines per column on the cephalic peduncle, the number of testes and possession of a thick-walled rather than thin-walled vagina distinguish E. parsadrayaiense sp. n. from E. acanthinophyllum. To date, with these two new species, five species of Diphyllidea have been reported from the Persian Gulf.
A new lecanicephalidean genus, Seussapex gen. n., is erected for specimens collected from stingrays from the Indo-West Pacific resembling the little known species Tenia [sic] narinari MacCallum, 1917 from the spotted eagle ray, Aetobatus narinari (Euphrasen). Members of this new genus are unique in their possession of a multi-tiered apical structure comprising a bipartite apical modification of the scolex proper, and an externally bipartite apical organ with anterior and posterior glandular compartments internally. The appearance of the scolex varies dramatically depending on state of protrusion and/or evagination of these different parts which appear to be able to function independently. Seussapex karybares sp. n. parasitizing Himantura uarnak 2 (sensu Naylor et al., 2012) in northern Australia is described as the type species and Tenia [sic] narinari is transferred to the new genus. The two species differ in scolex length and width of the posterior dome-shaped portion of the apical organ. Histological sections of scoleces stained using the periodic acid-Schiff (PAS) reaction showed the surface of the anterior part of the apical organ and the anterior glandular compartment to stain PAS positive, suggesting a chemical mode of attachment to the host's intestinal mucosal surface. Extensive collecting efforts of stingrays in the Indo-West Pacific shows Seussapex gen. n. to be restricted to species of Himantura Müller et Henle and suggests additional diversity in this group of hosts. In addition, the host identity of Seussapex narinari (MacCallum, 1917) comb. n. is called into question.
Recent collections of cestode parasites from two species of the myliobatid genus Aetomylaeus Garman from several localities in the Pacific Ocean resulted in the discovery of two new species of Halysioncum Caira, Marques, Jensen, Kuchta et Ivanov, 2013. Halysioncum gibsoni sp. n. from Aetomylaeus maculatus (Gray) in the South China Sea off Borneo differs from all of its congeners in having the following combination of characters: 27 apical hooks (14 type A and 13 type B hooks), 11-12 lateral hooklets, 22-28 spines per column on the cephalic peduncle, testes distributed in a single column and an internal seminal vesicle. Halysioncum arafurense sp. n., recovered from Aetomylaeus cf. nichofii 2 (sensu Naylor et al. 2012b) in the Arafura Sea off the Wessel Islands, Northern Territory, Australia, can be distinguished from its congeners based on the following combination of characters: 23 apical hooks (12 type A and 11 type B hooks), the number of lateral hooklets (9-11), the number of spines per column on the cephalic peduncle (20-24), the number and distribution of the testes (13-15 testes in two irregular columns), and the distribution of vitelline follicles (interrupted dorsally at the level of the ovarian lobes). Both species represent the first verified records of diphyllideans from eagle rays of the genus Aetomylaeus and formally extend the host associations of diphyllideans to include a third genus of Myliobatiformes. The myliobatiforms are indeed an understudied group of available hosts for diphyllideans and represent interesting target hosts if the diversity of diphyllidean tapeworms is to be fully estimated and understood.
In the present study two new species of Tetragonocephalum Shipley et Hornell, 1905, T. mackenziei sp. n. and T. kazemii sp. n., are described from the spiral intestine of the cowtail stingray, Pastinachus sephen (Forsskål), from the northern coast of the Gulf of Oman. Tetragonocephalum mackenziei is distinguished from the 16 other valid species of Tetragonocephalum by a unique combination of characteristics, i.e. sperm-filled seminal receptacle in immature proglottids, body length (7.7-17.5 mm), body width (213-288 µm), number of proglottids (34-49), number of testes (10-14), size of scolex (228-315 µm × 213-288 µm) and size of acetabula (56-73 µm × 61-75 µm). Tetragonocephalum kazemii is morphologically distinguishable from its valid congeners and T. mackenziei based on a combination of characteristics, including body length (28.8-36.6 mm), number of proglottids (50-65), number of testes (30-42), size of scolex (388-564 µm × 326-448 µm), size of acetabula (62-86 µm × 57-90 µm) and testes (25-39 × 21-32). This brings the total number of validly described species of Tetragonocephalum to 18 and expands our knowledge of this diverse genus to now include the Gulf of Oman, as well as Arafura Sea, northern Indian Ocean and western Pacific Ocean., Atabak Roohi Aminjan, Masoumeh Malek., and Obsahuje bibliografii