Software measurements provide developers and software managers with information on various aspects of software systems, such as effectiveness, functionality, maintainability, or the effort and cost needed to develop a software system. Based on collected data, models capturing some aspects of software development process can be constructed. A good model should allow software professionals to not only evaluate current or completed projects but also predict future projects with an acceptable degree of accuracy.
Artificial neural networks employ a parallel distributed processing paradigm for learning of system and data behavior. Some network models, such as multilayer perceptrons, can be used to build models with universal approximation capabilities. This paper describes an application in which neural networks are used to capture the behavior of several sets of software development related data. The goal of the experiment is to gain an insight into the modeling of software data, and to evaluate the quality of available data sets and some existing conventional models.