The domatic numbers of a graph $G$ and of its complement $\bar{G}$ were studied by J. E. Dunbar, T. W. Haynes and M. A. Henning. They suggested four open problems. We will solve the following ones: Characterize bipartite graphs $G$ having $d(G) = d(\bar{G})$. Further, we will present a partial solution to the problem: Is it true that if $G$ is a graph satisfying $d(G) = d(\bar{G})$, then $\gamma (G) = \gamma (\bar{G})$? Finally, we prove an existence theorem concerning the total domatic number of a graph and of its complement.
Generalized Petersen graphs are certain graphs consisting of one quadratic factor. For these graphs some numerical invariants concerning the domination are studied, namely the domatic number $d(G)$, the total domatic number $d_t(G)$ and the $k$-ply domatic number $d^k(G)$ for $k=2$ and $k=3$. Some exact values and some inequalities are stated.
The restrained domination number $\gamma ^r (G)$ and the total restrained domination number $\gamma ^r_t (G)$ of a graph $G$ were introduced recently by various authors as certain variants of the domination number $\gamma (G)$ of $(G)$. A well-known numerical invariant of a graph is the domatic number $d (G)$ which is in a certain way related (and may be called dual) to $\gamma (G)$. The paper tries to define analogous concepts also for the restrained domination and the total restrained domination and discusses the sense of such new definitions.