We establish some properties of the class of order weakly compact operators on Banach lattices. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms.
We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice $E$ into a Banach lattice $F$ is an order $\sigma $-complete vector lattice.