The paper presents an existence result for global solutions to the finite dimensional differential inclusion y ′ ∈ F(y), F being defined on a closed set K. A priori bounds for such solutions are provided.
In this paper, we discuss the existence of solutions for a boundary value problem of fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Our results include the cases when the multivalued map involved in the problem is (i) convex valued, (ii) lower semicontinuous with nonempty closed and decomposable values and (iii) nonconvex valued. In case (i) we apply a nonlinear alternative of Leray-Schauder type, in the second case we combine the nonlinear alternative of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan and Colombo, while in the third case we use a fixed point theorem for multivalued contractions due to Covitz and Nadler.
We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.
We prove the existence and uniform decay rates of global solutions for a hyperbolic system with a discontinuous and nonlinear multi-valued term and a nonlinear memory source term on the boundary.