We consider a large class of impulsive retarded functional differential equations (IRFDEs) and prove a result concerning uniqueness of solutions of impulsive FDEs. Also, we present a new result on continuous dependence of solutions on parameters for this class of equations. More precisely, we consider a sequence of initial value problems for impulsive RFDEs in the above setting, with convergent right-hand sides, convergent impulse operators and uniformly convergent initial data. We assume that the limiting equation is an impulsive RFDE whose initial condition is the uniform limit of the sequence of the initial data and whose solution exists and is unique. Then, for sufficient large indexes, the elements of the sequence of impulsive retarded initial value problem admit a unique solution and such a sequence of solutions converges to the solution of the limiting Cauchy problem., Márcia Federson, Jaqueline Godoy Mesquita., and Obsahuje seznam literatury
In this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution. This fact implies that the nonlinear algebraic equation approximating the ordinary differential energy equation, which additionally coincides with the wellknown standard step method usually applied for computing of the flow profile, can have variable number of roots. Consequently, more than one alternative solution corresponding to the same initial condition can be provided. Using this property it is possible to compute the water flow profile passing through the critical stage.
We deal with the problems of four boundary points conditions for both differential inclusions and differential equations with and without moving constraints. Using a very recent result we prove existence of generalized solutions for some differential inclusions and some differential equations with moving constraints. The results obtained improve the recent results obtained by Papageorgiou and Ibrahim-Gomaa. Also by means of a rather different approach based on an existence theorem due to O. N. Ricceri and B. Ricceri we prove existence results improving earlier theorems by Gupta and Marano.
Sufficient conditions are presented for all bounded solutions of the linear system of delay differential equations \[ (-1)^{m+1}\frac{d^my_i(t)}{dt^m} + \sum ^n_{j=1} q_{ij} y_j(t-h_{jj})=0, \quad m \ge 1, \ i=1,2,\ldots ,n, \] to be oscillatory, where $q_{ij} \varepsilon (-\infty ,\infty )$, $h_{jj} \in (0,\infty )$, $i,j = 1,2,\ldots ,n$. Also, we study the oscillatory behavior of all bounded solutions of the linear system of neutral differential equations \[ (-1)^{m+1} \frac{d^m}{dt^m} (y_i(t)+cy_i(t-g)) + \sum ^n_{j=1} q_{ij} y_j (t-h)=0,
\] where $c$, $g$ and $h$ are real constants and $i=1,2,\ldots ,n$.