A cytoskeletal network contributes significantly to intracellular regulation of mechanical stresses, cell motility and cellular mechanics. Thus, it plays a vital role in defining the mechanical behaviour of the cell. Among the wide range of models proposed for dynamic behaviour of cytoskeleton, the soft glassy rheology model has gained special attention due to the resemblance of its predictions with the mechanical data measured from experiment. The soft glassy material, theory of soft glassy rheology and experiment on cytoskeleton has been discussed, which leads to a discussion of the unique features and flaws of the model. The soft glassy rheological model provides a unique explanation of the cytoskeleton ability to deform, flow and remodel. and Obsahuje seznam literatury
In most amoeboid cells, the main protein involved in motility is actin. Nematode sperm are an exception, and their amoeboid motility is based on major sperm protein (MSP). We have studied the localization of actin and MSP in spermatids and spermatozoa of Graphidium strigosum (Dujardin, 1845), a species which has elongate male germ cells in which organelles are easily identified. Electrophoreses of G. slrigosum sperm proteins indicate that the main protein band, about 15 kDa in molecular weight, is specifically recognized by an anti-MSP polyclonal antibody developed against MSP of Caenorhabditis elegans (Burke and Ward 1983). Actin is present in small quantities. Immunocytochemical observations reveal that actin and MSP have an identical localization in precise areas of the male germ cells. Spermatids are labelled as dots around a central unlabelled zone, and spermatozoa are labelled only at the level of the anterior cap. Observations in G. strigosum are similar to that previously obtained in Heligmosomoides polygyrus (Mansir and Justine 1996). Co-localization of actin and MSP in the anterior cap of the spermatozoon, the region associated with pseudopod production, does not demonstrate directly that actin is involved in amoeboid movements, but shows that the role of actin in the cytoskeleton of nematode sperm should be re-investigated.
Rat liver myofibroblasts (MFB) were isolated by repeated passaging of nonparenchymal liver cell fraction. They were cultured on polystyrene Petri dishes, on fibrin or on type I collagen gels for 5 days. Quantitative RT-PCR, Western blotting, zymography and immunocytochemistry were used to study differences in cell morphology and protein expression. MFB were large and spread on plastic substrate, with prominent α-smooth muscle (α-SMA) fibres. They turned much smaller and elongated on collagen which was accompanied by the rearrangement of the cytoskeleton and a decrease in α-SMA and β-actin content. Collagen gel induced the expression of a group of metalloproteinases (MMP-2, -3, -9, -13), on mRNA and protein level which resulted in the degradation of the gel. This response was accompanied by changes in the mRNA expression of cytokines of TGF-β family, CTGF and interleukin-6, as well as of osteopontin and thrombospondin-2 that are involved in metalloproteinases (MMPs) regulation. The expression of MMPs substrates, collagen types I, IV and XII did not change or decreased. The effects of fibrin gels on MFB were milder than those of collagen. MFB assumed to deposit collagen and other ECM components in fibrotic liver, besides hepatic stellate cells, also possess a great collagenolytic potential., A. Jiroutová, ... [et al.]., and Obsahuje seznam literatury
The cytoskeleton plays a key role in cellular proliferation, cellshape maintenance and internal cellular organization. Cells are highly sensitive to changes in microgravity, which can induce alterations in the distribution of the cytoskeletal and cell proliferation. This study aimed to assess the effects of simulated microgravity (SMG) on the proliferation and expression of major cell cycle-related regulators and cytoskeletal proteins in human umbilical cord mesenchymal stem cells (hucMSCs). A WST-1 assay showed that the proliferation of SMG-exposed hucMSCs was lower than a control group. Furthermore, flow cytometry analysis demonstrated that the percentage of SMG-exposed hucMSCs in the G0/G1 phase was higher than the control group. A western blot analysis revealed there was a downregulation of cyclin A1 and A2 expression in SMG-exposed hucMSCs as well. The expression of cyclin-dependent kinase 4 (cdk4) and 6 (cdk6) were also observed to be reduced in the SMG-exposed hucMSCs. The total nuclear intensity of SMG-exposed hucMSCs was also lower than the control group. However, there were no differences in the nuclear area or nuclear-shape value of hucMSCs from the SMG and control groups. A western blot and quantitative RT-PCR analysis showed that SMG-exposed hucMSCs experienced a downregulation of β-actin and α-tubulin compared to the control group. SMG generated the reorganization of microtubules and microfilaments in hucMSCs. Our study supports the idea that the downregulation of major cell cycle-related proteins and cytoskeletal proteins results in the remodeling of the cytoskeleton and the proliferation of hucMSCs., Ho Nguyen Quynh Chi, Hoang Nghia Son, Doan Chinh Chung, Le Dinh Huan, Tran Hong Diem, Le Thanh Long., and Obsahuje bibliografii