In the near future, hydrogen will become an important fuel which may be able to resolve local problems connected with air quality. Hydrogen-propelled transport means are being developed and are already used in the automobile industry. Since the combustion of hydrogen does not produce any emissions of carbon oxides but only water, hydrogen is considered as a key fuel of the future. Hydrogen is abundantly present all over space and can be obtained from a number of resources, be they renewable or non-renewable. Global production has so far been dominated by hydrogen production from fossil fuels, with the most significant contemporary technologies being the reforming of hydrocarbons, pyrolysis and co-pyrolysis. Plasma cracking is still in the developmental stage. The preferred method of hydrogen production on an industrial scale is steam reforming of natural gas for its low operational and production costs. When the operational costs of steam reforming and partial oxidation are compared, partial oxidation seems to be a more acceptable process, but the subsequent shift makes this process more expensive. Pyrolysis processes have acceptable investment costs and besides the production of hydrogen also satisfactory yields of oils. Two-stage co-pyrolysis is suitable considering its acquisition of a high amount of hydrogen from mixed charges. It is apparent that the co-pyrolysis of organic materials with coals is a process for hydrogen production capable of competing. It can therefore play a significant role in the future., Olga Bičáková and Pavel Straka., and Obsahuje bibliografii