Photosynthetic and growth characteristics of Mosla chinensis and M. scabra were compared at three irradiances similar to shaded forest understory, forest edge, and open land. At 25 % full ambient irradiance, M. chinensis and M. scabra had similar photosynthetic characteristics, but saturation irradiance, compensation irradiance, and apparent quantum yield of M. chinensis were higher than those of M. scabra at full ambient irradiance and 70 % full ambient irradiance. At the same irradiance treatment, specific leaf area and leaf area ratio of M. chinensis were lower than those of M. scabra. Photon-saturated photosynthetic rate and water use efficiency of M. chinensis, however, were not significantly higher than those of M. scabra, and the leaf area and total biomass were lower than those of M. scabra. As a sun-acclimated plant, the not enough high photosynthetic capacity and lower biomass accumulation may cause that M. chinensis has weak capability to extend its population and hence be concomitant in the community. and J.-X. Liao ... [et al.].
In the dimorphic stag’s hom fem, Platycerium coronarium (Koenig ex Mueller) Desv., photosynthetic characters and chlorophyll (Chl) contents were deteiinined in both nést and pendulous fronds at different stages of ontogeny and at different positions along the longest length of each frond. Area-specific radiant energy- saturated net photosynthetic (P^) and dark respiration rates, dry mass-specific Chl content and quantum yield increased during frond development and decreased when senescence set in. Radiant energy-saturated and dry-mass specific Chl content were greatest in the youngest tissues of each frond. In addition to the functions ascribed to the nést (water and nutrient collection) and pendulous (reproduction) fronds, the results indicate the important roles of both frond types in providing Chemical energy to the growth and survival of the plant.