The climatic variability and climate changes in the geological history of Earth are correlated with the environmental development. A special attention is paid to the impact of changing climate on the water resources and hydrological cycle. Possible impact of man's activities on the climatic variability is also discussed. Can the regulation of such activities slow down or bring to a stop the forthcoming climate change? A comparison of data from the Holocene period and from modern history indicates that the climatic variability and climate change have been always produced by external periodic phenomena and occasional cataclysmic events. In other words, the climate has never been stable and administrative measures limiting man's influence on the climate can bring only partial results. Considering that the climatic change is an unavoidable process, following measures should be taken: First, alternative scenarios of possible climatic development, would it be cooling or warming, should be set up. Second, preventive and protective methodologies need to be prepared for each scenario well in advance. Third, technologies facilitating man's survival and everyday life under changed climatic situation should be developed. and Klimatická variabilita a změny klimatu jsou sledovány v geologické historii Země a korelovány s historií životního prostředí. Zvláštní pozornost se věnuje vlivu měnícího se klimatu na vodní zdroje a hydrologický cyklus. Také je diskutován vliv činnosti člověka ve vztahu ke klimatu. Je možné redukcí takových aktivit zpomalit nebo zcela zastavit klimatické změny? Porovnání dat z holocénu a moderní historie ukazuje, že klimatická variabilita a změny byly vždycky vyvolávány mimozemskými periodickými vlivy, případně občasnými katastrofickými jevy. Jinými slovy, klima nikdy nebylo stabilní. Proto také administrativní opatření, omezující vliv člověka na klima, mohou být úspěšná pouze do jisté míry. Uvážíme-li, že klimatická variabilita i její hydrologické následky jsou nevyhnutelné, je třeba připravit příslušné scénáře možných klimatických změn, ať už souvisí s ochlazováním nebo oteplováním. Pro každý ze scénářů je třeba navrhnout metody preventivních a ochranných opatření s dostatečným předstihem. Konečně bude třeba vypracovat nové technologie usnadňující život člověka ve změněných klimatických podmínkách.
Climate change and human activity are two linked factors that alter the spatiotemporal distribution of the available water. Assessing the relative contribution of the two factors on runoff changes can help the planners and managers to better formulate strategies and policies regarding regional water resources. In this work, using two typical sub-basins of the Yellow River as the study area, we first detected the trend and the breakpoint in the annual streamflow data with the Pettitt test during the period 1964–2011. Next, a Budyko-based climate elasticity model and a monthly hydrological model were employed as an integrated method to distinguish the relative contributions of climate change and human activities to the long-term changes in runoff. The results showed that a significant decline in the annual runoff occurred in the two sub-basins during the study period, and the abrupt change point in the annual runoff at the two subbasins both occurred in 1997. The conceptual hydrological model performed well in reproducing monthly runoff time series at the two sub-basins. The Nash-Sutcliffe efficiency (NSE) between observed and simulated runoff during the validation period exceeds 0.83 for the two sub-basins. Climate elasticity method and hydrological model give consistent attribution results: human activities are the major drivers responsible for the decreased annual runoff in the Ten Great Gullies Basin. The relative contributions of climate change and human activities to the changes in the annual runoff were 22–32% and 68–78%, respectively.
Substantial evidence shows that the frequency of hydrological extremes has been changing and is likely to continue to change in the near future. Non-stationary models for flood frequency analyses are one method of accounting for these changes in estimating design values. The objective of the present study is to compare four models in terms of goodness of fit, their uncertainties, the parameter estimation methods and the implications for estimating flood quantiles. Stationary and non-stationary models using the GEV distribution were considered, with parameters dependent on time and on annual precipitation. Furthermore, in order to study the influence of the parameter estimation approach on the results, the maximum likelihood (MLE) and Bayesian Monte Carlo Markov chain (MCMC) methods were compared. The methods were tested for two gauging stations in Slovenia that exhibit significantly increasing trends in annual maximum (AM) discharge series. The comparison of the models suggests that the stationary model tends to underestimate flood quantiles relative to the non-stationary models in recent years. The model with annual precipitation as a covariate exhibits the best goodness-of-fit performance. For a 10% increase in annual precipitation, the 10-year flood increases by 8%. Use of the model for design purposes requires scenarios of future annual precipitation. It is argued that these may be obtained more reliably than scenarios of extreme event precipitation which makes the proposed model more practically useful than alternative models.