Salt stress causes decrease in plant growth and productivity by disrupting physiological processes, especially photosynthesis. The accumulation of intracellular sodium ions at salt stress changes the ratio of K : Na, which seems to affect the bioenergetic processes of photosynthesis. Both multiple inhibitory effects of salt stress on photosynthesis and possible salt stress tolerance mechanisms in cyanobacteria and plants are reviewed. and P. Sudhir, S. D. S. Murthy.
72 to 120 h of soil flooding of barley plants (Hordeum vulgare L. cv. Alfa) led to a noticeable decrease in the rates of CO2 assimilation and transpiration, and in chlorophyll and dry mass contents. Stomatal conductance decreased following flooding without appreciable changes in the values of intercellular CO2 concentrations. A drop in the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and of the photorespiratory enzymes phosphoglycollate phosphatase (EC 3.1.3.18) and glycollate oxidase (EC 1.1.3.1) was observed, while the activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) increased in all flooded plants. Flooding of barley plants caused an increase in proline content and in leaf acidity. and R. Y. Yordanova, L. P. Popova.