The aim of this study was to test the hypothesis that vasorelaxing action of vasonatrin peptide (VNP) is due to activation of the large-conductance Ca2+-activated potassium channel (BKCa) via guanylyl cyclase (GC)-coupled natriuretic peptide receptors (NPRs) in vascular smooth muscle cells (VSMCs). Contraction experiments were performed using human radial artery, whereas BKCa current by patch clamp was recorded in cells from rat mesenteric artery. Contractility of rings cut from human radial artery was detected in vitro. As a result, VNP induced a dose-dependent vasorelaxation of human radial artery, which could be mimicked by 8-Br-cGMP, and suppressed by TEA, a blocker of BKCa, HS-142-1, a blocker of GC-coupled NPRs, or methylene blue (MB), a selective inhibitor of guanylyl cyclase. Sequentially, whole-cell K+ currents were recorded using patch clamp techniques. BKCa current of VSMCs isolated from rat mesentery artery was obtained by subtracting the whole cell currents after applications of 10-7 mol/l iberiotoxin (IBX) from before its applications. In accordance with the results of arterial tension detection, BKCa current was significantly magnified by VNP, which could also be mimicked by 8-Br-cGMP, whereas suppressed by HS-142-1, or MB. Taken together, VNP acts as a potent vasodilator, and NPRA/B-cGMP-BKCa is one possible signaling system involved in VNP induced relaxation., J. Yu ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy