The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that per ceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion home ostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we exp ose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges., M. C. Dos Santos Moreira, L. M. Naves, S. M. Marques, E. F. Silva, A. C. S. Rebelo, E. Colombari, G. R. Pedrino., and Obsahuje bibliografii
We present the current state of complex circulatory dynamics model development based on Guyt on’s famous diagram. The aim is to provide an open-source model that will allow the simulation of a number of pathological conditions on a virtual patient including cardiac, respiratory, and kidney failure. The model will also simulate the therapeutic influence of various drugs, infusions of electrolytes, blood transfusion, etc. As a current result of implementation, we describe a co re model of human physiology targeting the systemic circulation, arterial pressure and body fluid regulation, including short- and long-term regulations. The model can be used for educational purposes and general reflection on physiological regulation in path ogenesis of various diseases., J. Kofránek, J. Rusz., and Obsahuje bibliografii