We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.
In this paper, we present characterizations of pairs of graphs whose join graphs are 2-minimally nonouterplanar. In addition, we present a characterization of pairs of graphs whose join graphs are 2-minimally nonouterplanar in terms of forbidden subgraphs.