Diabetes is a recognized risk factor of heart disease. The abnormalities related to a decreased heart performance probably arise at cellular and molecular levels already in the asymptomatic phase of diabetes. However, the early alterations initiating a sequence of events that culminates in the clinical signs have not been fully elucidated yet. This review deals with some biophysical methods applied to investigation of left ventricular myocytes in rats with streptozotocin diabetes, as well as our most important findings concerning diabetes-induced cell changes which cannot be captured by other techniques. The observed decrease in sarcolemmal membrane fluidity is causatively associated with increased glycation and glycoxidation. On the other hand, an increase in the mitochondrial membrane fluidity may be attributed to augmented energy transduction through the membranes. We reported for the first time concurrent measurements of membrane potential and dynamics, and respiratory chain activities in rat heart mitochondria, as well as calcium transients in the myocytes from diabetic hearts together with the assessed quantitative relationships among these variables. We were able to detect some significant alterations that may underlie myocyte dysfunction and subsequent remodeling of the heart. We suppose that not all these changes reflect mechanisms leading to pathology; some may represent adaptive and compensatory responses to diabetes., I. Waczulíková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Aerobic exercise showed beneficial influence on cardiovascular systems in aging, and mechanisms underlying vascular adaption remain unclear. Large-conductance Ca2+ -activated K+(BKCa) channels play critical role s in regulating cellular excitability and vascular tone. This study determin ed the effects of aerobic exercise on aging -associated functional changes in BK Ca channels in cerebrovascular myocytes, Male Wistar rats aged 20- 22 mo nths were randomly assigned to sedentary (O -SED), low training frequency (O-EXL), and high training frequency group (O -EXH). Young rats were used as control. Compared to young rats, w hole -cell BK Ca current was decreased, and amplitude of spontaneous transient outward currents were reduced. The open probability and Ca2+/voltage sensitivity of single BK Ca channel were declined in O -SED, accompanied with a reduction of tamoxifen-induced BK Ca activation; the mean open time of BK Ca channels was shortened whereas close time was prolonged. Aerobic exercise training markedly alleviated the aging-associated decline independent of training frequency. Exercise three times rather than five times weekly may be a time and cost-saving training volume required to offer bene ficial effects to offset the functional declines of BK Ca during aging., Na Li, Bailin Liu, Sharon Xiang, Lijun Shi., and Obsahuje bibliografii