One of the most important services provided by biodiversity is thought to be the biological control of pests in agricultural landscapes, including aphids on cereals. The food webs potentially contributing to biological control of aphids primarily consist of polyphagous predators, parasitoids and pathogens. The problems of aphid pests have increased greatly since the 1970-ies, possibly as an effect of agricultural intensification, which is thought to have reduced diversity and abundance of these predators and parasites and consequently their biocontrol potential. The main objective of this study was to test this by measuring this potential for biological control of aphids, and relate it to agricultural intensification and predator abundance. We selected 30 farms distributed along agricultural intensification gradients, based on the amount of fertilizers applied per hectare. Estimates of ground-living predator density were obtained using pitfall trapping over a one-week period. Traps were placed inside the cereal fields, 10 m from the margin, in 2 replicates per field. Predation risk due to ground-living predators (biocontrol potential) was estimated by monitoring removal of aphids glued to labels. This was done in the same fields, in the immediate vicinity of the traps, over a period of 2 days. The proportion of aphids eaten per unit time was the response variable. We present the correlations between intensity of agricultural exploitation, predator abundance and biocontrol potential. The outcomes are not straightforward in that intensification begets a reduction in predator density and biocontrol potential. We discuss the potential confounding issues that might have affected our results.
Chironomidae, or non-biting midges, are found worldwide in a wide variety of aquatic habitats. During periods of mass adult eclosion they can become a nuisance and health hazard. Current control methods target the aquatic larval stage and include the use of insect growth regulators or insecticides, which may be prohibited in certain environments or affect non-target organisms. The aim of this study was to investigate whether entomopathogenic nematodes (EPNs) of the families Steinernematidae and Heterorhabditidae, currently employed for control of terrestrial crop pests, could be used as a viable biocontrol for the aquatic larval stages of the Chrionomidae, offering an alternative to current chemical methods. We demonstrate that Steinernema feltiae (Filipjev, 1934), Steinernema carpocapsae (Weiser, 1955), Steinernema kraussei (Steiner, 1923) and Heterorhabditis bacteriophora (Poinar, 1975) are able to survive in water up to 96 h and are able to parasitize and kill Chironomus plumosus (Linnaeus, 1758) larvae, with mortality observed after just 24 h exposure and with < 20% survival after 4 days. We also show that following application to the water column, EPNs sink to the bottom of the lentic water body and can remain alive for more than 96 h. Taken together, we believe that several EPN species could be developed as a valid form of biocontrol for Chironomidae.