We have investigated the relative importance of bark roughness and host tree species in determining the diversity and make-up of coleopteran assemblages on the trunks of trees in sub-tropical rainforest in south-east Queensland, Australia. There are clear, statistically significant, patterns in the composition of the assemblages which reflect bark roughness. Rougher bark had associated greater species and family richness, a higher proportion of "rare" species, a higher value for Shannon diversity and lower values for the Simpson and Berger-Parker Index (measures of dominance within the sample). The data support strongly the idea that there is a bark-specific beetle assemblage. The rougher bark was associated with significantly greater numbers of an anobiid species, Dorcatoma sp., and of the latridiid species Aridius australicus. Rougher bark also harboured significantly larger species. The most likely explanation for this seems to be related to the physical heterogeneity and biological complexity of the habitat, presenting, as it does, greater opportunities for shelter, feeding specialisation and intra-species aggregation. Rougher bark contained a higher proportion of both predatory and xylophagous groups than did smoother categories. No clear influence of tree species could be detected although some trends were evident.
Photosynthetic assimilatíon of CO2 in a four-year-old plant of lilac, measured in April and in July, was compared. The results were calculated with regard to the surface area of the particular year groups of the stems and to the total surface area of the stems as well as to the globál surface area of the leaves of the plant. In April the stems were the only site of photosynthesis. In July the main organs of CO2 assimilatíon were the leaves, while the participation of the shoots in that period amounted to 2 %. In the process of photosynthesis in the stems mainly the endogenous CO2 was utilized, while the share of exogenous CO2 was 0.02 %. The potential photosynthesis was determined also on the basis of measurements of oxygen release by chloroplasts isolated from the bark and leaves. In July the production of oxygen by chloroplasts ffom the bark of all stems was 5 % of the amount of oxygen released by the chloroplasts isolated from the leaves. In April the production of oxygen by chloroplasts isolated from the bark of the particular year groups of the stems was higher than in July. In the process of CO2 assimilatíon by the bark and leaves the potential Chemical activity of chloroplasts was not fully utilized. The potential CO2 assimilatíon by chloroplasts isolated from the bark was 8.5 times greater than the measured results of CO2 exchange in July and 35.8 times greater in April.