INTRODUCTION: A previous study has employed shear-wave ultrasound elastographic imaging to assess corneal rigidity in an ex-vivo porcine eye model. This study employs the same modality in vivo in a rabbit eye model in order to assess lens, ciliary body and total ocular rigidity changes following the instillation of atropine and pilocarpine. METHODS: Ten non-pigmented female rabbits were examined. Measurements of the lens, ciliary body and total ocular rigidity as well as lens thickness and anterior chamber depth were taken with the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France) with the SuperLinear™ SL 15-4 transducer in both eyes at baseline as well as after pilocarpine and atropine instillation. The IOP was also measured with the TonoPen tonometer. RESULTS: Changes in rigidity in the examined areas following atropine instillation were statistically not significant. Ciliary body rigidity was significantly increased whereas lens and total ocular rigidity were significantly reduced following pilocarpine instillation. The decrease in lens rigidity following pilocarpine was significantly associated with the respective increase in ciliary body rigidity. CONCLUSIONS: Shear-wave ultrasound elastography can detect in vivo rigidity changes in the anterior segment of the rabbit eye model and may potentially be applied in human eyes, providing useful clinical information on conditions in which rigidity changes play an important role, such as glaucoma, pseudoexfoliation syndrome or presbyopia. and E. T. Detorakis, E. E. Drakonaki, H. Ginis, N. Karyotakis, I. G. Pallikaris
AIM: The ability of two newly developed oximes (K727, K733) to reduce tabun-induced acute neurotoxic signs and symptoms was evaluated and compared with currently available trimedoxime in rats. METHODS: The neuroprotective effects of the oximes studied combined with atropine on Wistar rats poisoned with tabun at a lethal dose (380 µg/kg i.m.; 90% of LD50 value) were evaluated. Tabun-induced neurotoxicity was monitored by the functional observational battery consisting of 38 measurements of sensory, motor and autonomic nervous functions at 2 hours following tabun challenge. RESULTS: All tested oximes combined with atropine enable tabun-poisoned rats to survive till the end of experiment. Both newly developed oximes (K727, K733) combined with atropine were able to decrease tabun-induced neurotoxicity in the case of lethal poisoning although they did not eliminate all tabun-induced acute neurotoxic signs and symptoms. CONCLUSION: The ability of both novel bispyridinium oximes to decrease tabun-induced acute neurotoxicity was slightly lower than that of trimedoxime. Therefore, the newly developed oximes are not suitable for the replacement of commonly used oximes such as trimedoxime in the treatment of acute tabun poisonings. and J. Kassa, J. Hatlapatková, J. Žďárová Karasová