Considering the effects of alcohol on cardiac electrical behavior as well as the important role of the inward rectifier potassium current I K1 in arrhythmogenesis, this study was aimed at the effect of acetaldehyd e, the primary metabolite of ethanol, on I K1 in rat ventricular myocytes. Acetaldehyde induced a reversible inhibition of I K1 with IC 50 = 53.7± 7.7 μM at -110 mV; a significant inhibition was documented even at clinically -relevant concentrations (at 3 μM by 13.1 ±3.0 % ). The inhibition was voltage -independent at physiological voltages above - 90 mV. The I K1 changes under acetaldehyde may contribute to alcohol - induced alterations of cardiac electrophysiology, especially in individuals with a genetic defect of a ldehyde dehydrogenase where the acetaldehyde level may be elevated., M. Bébarová, P. Matejovič, M. Šimurdová, J. Šimurda., and Obsahuje bibliografii
Guinea-pigs were maintained for 5 weeks on a diet containing three different concentrations of vitamin C: a) traces (none added), b) medium (0.05 % w/w) and high (0.5 % w/w). Twenty-four hours before killing the animals received one i.p. dose of 3 g ethanol per kg body weight (a model of short-term acute intoxication). In a parallel experiment which lasted 5 weeks, the animals were treated every week with two i.p. doses of 1 g ethanol per kg body weight followed bv the final acute intoxication (3 g ethanol/kg) (a model of long-term chronic alcoholization). In both experiments, the guinea-pigs with the highest tissue concentration of vitamin C proved to have significantly decreased residual levels of ethanol and acetaldehyde in the liver and the brain, a decreased activity of alanine- and aspartate aminoacyl transferases in the serum and decreased contents of triacylglycerols and cholesterol in the serum and liver in comparison with the vitamin C-unsupplemented group. The regression curve expressing vitamin C levels versus residual ethanol and acetaldehyde concentrations in the liver confirmed the highly significant negative correlation between them. Administration of the guinea-pigs with large amounts of vitamin C appears to accelerate ethanol and acetaldehyde metabolism and reduce some of their adverse health effects.