Absolute continuity for functionals is studied in the context of proper and abstract Riemann integration examining the relation to absolute continuity for finitely additive measures and giving results in both directions: integrals coming from measures and measures induced by integrals. To this end, we look for relations between the corresponding integrable functions of absolutely continuous integrals and we deal with the possibility of preserving absolute continuity when extending the elemental integrals.
In this paper two Denjoy type extensions of the Pettis integral are defined and studied. These integrals are shown to extend the Pettis integral in a natural way analogous to that in which the Denjoy integrals extend the Lebesgue integral for real-valued functions. The connection between some Denjoy type extensions of the Pettis integral is examined.