The effect of rooibos tea (Aspalathus linearis) on liver antioxidant status and oxidative stress was investigated in rat model of carbon tetrachloride-induced liver damage. Synthetic antioxidant N-acetyl-L-cysteine (NAC) was used for comparison. Administration of carbon tetrachloride (CCl4) for 10 weeks decreased liver concentrations of reduced and oxidized forms of coenzyme Q9 (CoQ9H2 and CoQ9), reduced a-tocopherol content and simultaneously increased the formation of malondialdehyde (MDA) as indicator of lipid peroxidation. Rooibos tea and NAC administered to CCl4-damaged rats restored liver concentrations of CoQ9H2 and a-tocopherol and inhibited the formation of MDA, all to the values comparable with healthy animals. Rooibos tea did not counteract the decrease in CoQ9, whereas NAC was able to do it. Improved regeneration of coenzyme Q9 redox state and inhibition of oxidative stress in CCl4-damaged livers may explain the beneficial effect of antioxidant therapy. Therefore, the consumption of rooibos tea as a rich source of natural antioxidants could be recommended as a market available, safe and effective hepatoprotector in patients with liver diseases.
The aim of this study was to investigate the effects of rooibos tea as a natural source of a wide scale of antioxidants on the prevention and treatment of oxidative stress in streptozotocin-induced diabetic rats. Expected significant changes of biochemical parameters characteristic for experimental diabetic state were found in plasma and tissues eight weeks after single dose streptozotocin application. Administration of aqueous and alkaline extracts of rooibos tea (or N-acetyl-L-cysteine for comparison) to diabetic rats did not affect markers of the diabetic status (glucose, glycated hemoglobin and fructosamine). Besides the parameters characterizing hepatotoxic effect of streptozotocin, rooibos tea significantly lowered advanced glycation end-products (AGEs) and malondialdehyde (MDA) in the plasma and in different tissues of diabetic rats, particularly MDA concentration in the lens. From these results we can conclude that antioxidant compounds in rooibos tea partially prevent oxidative stress and they are effective in both hydrophobic and hydrophilic biological systems. Therefore, rooibos tea as a commonly used beverage can be recommended as an excellent adjuvant support for the prevention and therapy of diabetic vascular complications, particularly for protecting ocular membrane systems against their peroxidation by reactive oxygen species.