The possibility of storing natural enemies at low temperatures is important for the mass production of biological control agents. We evaluated the effect of different periods of cold storage on immature mortality, mummy body mass, lifespan, reproduction and flight capacity of the parasitoid Praon volucre (Haliday). One-day-old mummies of the aphid Macrosiphum euphorbiae (Thomas) containing pre-pupae of P. volucre were stored in a climatic chamber at 5°C and 70 ± 10% RH in the dark for different periods of time (5, 10, 15 and 20 days). The control consisted of mummies kept at 22 ± 1°C, 70 ± 10% RH and a 12 h photophase. Percentage adult emergence, mummy body mass, flight capacity and number of eggs in the ovarioles of P. volucre females decreased with increase in the period of storage, while the longevity of females was only slightly affected. Fat content of mummies, percentage of parasitized aphids and survival of progeny to emergence decreased with increase in the period of storage. Storage of P. volucre pre-pupae for up to 5 days at 5°C did not affect any of the above mentioned parameters. The fact that P. volucre pre-pupae can be stored for 5 days without loss of quality and for 10 days with only a slight loss facilitates the planning of mass production and shipment., Juracy Caldeira Lins, Jr. ... [et al.]., and Obsahuje seznam literatury
Life table data of natural enemies are often used to understand their population dynamics and estimate their potential role in the biological control of pests. Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae) is an important pest of several crops and its intrinsic rate of population increase (rm) is 0.282 at 22°C. The life table parameters (immature mortality, developmental time, sex ratio of emerging adults, fecundity and longevity) of Praon volucre (Haliday) (Hymenoptera: Braconidae: Aphidiinae) parasitizing M. euphorbiae were estimated in a climatic chamber at 22 ± 1°C, RH 70 ± 10% and 12 h photophase. Immature mortality was 8.2%, developmental time of males and females was 13.9 and 14.4 days, respectively, and the sex ratio was 0.55 (= fraction of females). Parasitoid fecundity was 504 eggs and longevity 11 days. The net rate of reproduction (R0) was 207.5 females and the intrinsic rate of population increase (rm) 0.281 females/female/day. The time for doubling the population (TD) was 2.45 weeks. P. volucre has a population growth rate similar to that of its host M. euphorbiae and might therefore be a good candidate for the biological control of this aphid. and Juracy Caldeira Lins jr., Vanda Helena Paes Bueno, Diego Bastos Silva, Marcus Vinicius Sampaio, Joop C. van Lenteren.
The aphid Uroleucon ambrosiae (Thomas) is one of the principal pests found on greenhouse lettuce crops, and there is no efficient biological control agent of this pest in Brazil. This work evaluates the aphid U. ambrosiae as a host for the parasitoid Praon volucre (Haliday), aimed at using P. volucre as a potential biological control agent of U. ambrosiae on lettuce. As Macrosiphum euphorbiae (Thomas) is a common host of P. volucre in the field, the development of the parasitoid was compared on these two aphid species. Twenty nymphs of the 2nd instar were kept with P. volucre for one hour at 22 ± 1°C, 70 ± 10% RH and a 12 h photophase. The size of the aphid's tibiae at the moment of oviposition indicated that there was no significant size difference between U. ambrosiae (0.6 ± 0.02 mm) and M. euphorbiae (0.7 ± 0.03 mm). When mummies were formed, M. euphorbiae had significantly longer tibia (1.5 ± 0.03 mm) than U. ambrosiae (1.4 ± 0.02 mm). No significant differences were detected in the percentage emergence (74.9 ± 7.92 and 87.5% ± 3.31 for U. ambrosiae and M. euphorbiae, respectively), or proportion of female offspring (56.2 ± 7.62 and 44.2 ± 7.14%). The development time from oviposition to adult and longevity of females and males of P. volucre reared on the two host species were not different. High parasitism levels were recorded for both host aphid species, but the percentage parasitism of M. euphorbiae (54.4 ± 4.40) was higher than of U. ambrosiae (35.6 ± 5.30). Female parasitoids reared on M. euphorbiae had longer tibiae (0.78 ± 0.01 mm) than those reared on U. ambrosiae (0.72 ± 0.01 mm). Our results demonstrate that the alternative host species U. ambrosiae, compared to the natural host species M. euphorbiae, affects the female's size, but did not affect parasitoid development time, longevity, emergence or sex ratio. The parasitoid P. volucre seems to be a good candidate for using as a biological control agent of U. ambrosiae on lettuce in Brazil.