Changes in the position of the GNSS receiver antenna phase centre are still one of the dominant error sources associated with the measuring station. The preferred method of solving the problem is modeling antenna phase centre variations (PCV). Such models are available in igs05.atx, igs08.atx or igs14.atx files, among others. Due to different methods of antenna calibration (chamber calibration, relative field calibration, absolute field calibration) and different types of models (mean, individual), depending on the GNSS observation processing product used, there may occure differences in the estimated parameters, including station coordinates. In this paper, the results of GNSS observation processing using the models included in the igs08.atx and igs14.atx files for 12 EPN and ASG-EUPOS stations were analysed, both for daily and sub-daily time series of PPP solutions. The obtained results show that switching from the igs08.atx to igs14.atx (for the selected stations) induces differences in the vertical component, reaching up to ± 3 mm.
Global Navigation Satellite System (GNSS) positioning has characteristics of simple operation, high efficiency and high precision technique for landslide surface monitoring. In recent years, finalization of modern GNSS systems Galileo and BeiDou has brought a possibility of multi-GNSS positioning. The paper focuses on evaluation of possible benefits of multi-GNSS constellations in landslide monitoring. While simulating observational conditions of selected Recica landslide in the Czech Republic, one-month data from well-established permanent GNSS reference stations were processed. Besides various constellation combinations, differential and Precise Point Positioning techniques, observation data lengths and observation sampling intervals were evaluated. Based on the results, using a combination of GPS and GLONASS, or GPS, GLONASS and Galileo systems can be recommended, together with a static differential technique and observation periods for data collection exceeding eight hours. In the last step, data from GNSS repetitive campaigns realized at the Recica landslide during two years were processed with optimal setup and obtained displacement results were compared to standard geotechnical measurements.
The motion of GPS permanent stations during three earthquakes has been investigated with the use of Precise Point Positioning (PPP) technique and the seismological data. The study examines the ability of high-rate GPS observations to reflect the ground motion retrieved by the strong motion instruments (SM), considered to be more reliable and precise. The goal of this article is to show the sensitivity of GPS PPP kinematic high-rate positioning with position domain filtering using the band-pass Butterworth filter on small samples of position time series. The kinematic PPP approach in RTKLib software was used, supported by the CODE precise orbit and clock products to estimate positions from 5-hour long GPS phase datasets. Obtained position time series were reduced to 5-minute samples covering the time of co-seismic motion. The application of Butterworth band-pass filtering of GPS and seismological time series increased the agreement between them up to 72 % in terms of correlation, resulting in correlations within the range 0.34 to 0.99. The comparison of peak ground displacements (PGD) revealed that for Italian events, GPS–SM absolute value of the average difference is 6 mm with GPS–SM distances within the range of 0.05 to 2.14 km. In all analysed earthquakes, the agreement between GPSgrams and seismograms in terms of the first P-arrival polarity was checked and it was found that it is consistent in all cases. This confirms the GNSS technique capability for determining fault plane solution for earthquakes with magnitudes over 6.
When using the PPP method, it is recommended to take into account the tropospheric influences for obtaining reliable estimates. Global Navigation Satellite System (GNSS) observations taken at low elevation suffer more strongly from atmospheric, antenna phase center variation and multipath effects, hence the observations are noisier than those at higher elevation angle, but they are essential to decorrelate the estimated station height and tropospheric zenith delay (ZTD). To relate the ZTD in the direction of an observation, the so-called mapping function (MF) are used. In this article the influence of different mapping function was studieds such as: Niell mapping function (NMF), Global Mapping Function (GMF) in conjunction with the Global Pressure and Temperature 2-GPT2, Vienna Mapping Function 1 and no mapping function. The MF were used at different elevation cutoff angles - 50 , 70, 100 and 150. The impact was analyzed: a) on the postfit residuals of the ionospheric free combination for phase (LC) and for pseudorange (PC), b) daily variability for North, East and Up component; c) evaluation of coordinates repeatability and how they are affected by the changes of the cutoff elevation angle and mapping function. The analyzed data was taken from 4 EUREF stations for a period of one month - October 2015. By using the VMF1 mapping function, the lowest value was obtained for the postfit residuals of the LC combination for all the stations. The difference in daily variation between each individual solution for the horizontal component is at the level of ~0.3 ÷ 0.5 mm, with smaller effect on the East component compared to North, whereas the Up component is at the level of ~1.0 ÷ 1.5 mm. The standard deviation (SD) is used as a measure of station position repeatability and the results suggested that for high precision determination a cutoff elevation angle of 100 should be used., Sorin Nistor, Norbert-Szabolcs Suba and Aurelian-Stelian Buda., and Obsahuje bibliografii