Insects experience important selection pressures from their parasitoids, which affect both their population dynamics and their evolutionary responses. The interaction between the egg parasitoid Oomyzus galerucivorus Graham (Hymenoptera: Eulophidae) and its chrysomelid host Galeruca tanaceti L. (Coleoptera: Galerucinae) was investigated with the particular aim determining whether the chrysomelid host can escape its parasitoid by ovipositing late in the year as early as September. Although the leaf beetle and its parasitoid emerge in April, G. tanaceti starts to oviposit after spending the summer in reproductive diapause. The objective was to determine, whether the small parasitic wasp can parasitise its host's eggs even at the end of its host's reproductive season in December, when temperatures are low. Beetle oviposition, parasitism rates and temperatures were measured on three comparable mesoxerophytic grassland sites over the coarse of a season. Beetle oviposition, but not parasitism, was significantly positively dependent on temperature. Rate of oviposition decreased over the oviposition period with decrease in temperature. In contrast, after a lag phase of 1-2 weeks at the beginning of the oviposition period in September beetle egg clutches were parasitised at a constant rate until the end of the season in December. Host eggs were parasitised even at mean daily temperatures of 0-6°C. Thus the tansy leaf beetle does not escape from egg parasitism by ovipositing late in the season in central Germany.
Interactions between herbivorous insects and their parasitoids occur in highly structured and complex environments. Habitat structure can be an important factor affecting ecological interactions between different trophic levels. In this study the influence of plant architecture and surrounding vegetation structure on the interaction between the tansy leaf beetle, Galeruca tanaceti L. (Coleoptera: Chrysomelidae) and its egg parasitoid, Oomyzus galerucivorus Hedqvist (Hymenoptera: Eulophidae), was investigated at two small spatial scales in the field. It was expected that high and structurally complex plants or vegetation represent an enemy free space for the herbivore by making host search more difficult for the parasitoid. At the scale of individual plants, plant height had a positive influence on herbivore oviposition and egg clutch height a negative impact on parasitism. In addition, the beetle was more likely to oviposit on simple plants than on plants with branches, while the parasitoid remained unaffected by the degree of branching. At the microhabitat scale (r = 0.1 m around an oviposition site), both height and density of the vegetation affected beetle oviposition positively and egg parasitism negatively. The herbivore and its parasitoid, therefore, were influenced in opposite ways by habitat structure at both spatial scales investigated, suggesting the existence of an enemy free space for the herbivores' eggs on tall plants and in tall and complex vegetation. This study indicates that structural components of the environment are important for interactions among organisms of different trophic levels.