A new pre-processing algorithm for improved discrimination of odor samples is proposed. The pre-processed odor sample outputs from two sensors are input using a learning-vector quantization (LVQ) classifier as a means of odor recognition to be employed within electronic nose applications. The proposed algorithm brings out highly scattered classes while minimizing the within-class scatter of the samples given an odor class. LVQ is observed to operate robustly and reliably in terms of variation of parameters of interest, mainly a learning parameter. Due to the increased performance along with computational simplicity and robustness, the scheme is suitable to sample-by-sample identification of olfactory sensory data and can be easily adapted to hierarchical processing with other sensory data in real-time.