Epidemiological studies have confirmed that hyperglycemia is the most important factor in the onset and progress of vascular complications, both in Type 1 and 2 diabetes mellitus. The formation of advanced glycation end-products (AGEs) correlates with glycemic control. The AGE hypothesis proposes that accelerated chemical modification of proteins by glucose during hyperglycemia contributes to the pathogenesis of diabetic complications including nephropathy, retinopathy, neuropathy and atherosclerosis. Recent studies have shown that increased formation of serum AGEs exists in diabetic children and adolescents with or without vascular complications. Furthermore, the presence of diabetic complications in children correlates with elevated serum AGEs. The level of serum AGEs could be considered as a marker of later developments of vascular complications in children with Type 1 and 2 diabetes mellitus. The careful metabolic monitoring of young diabetics together with monitoring of serum AGEs can provide useful information about impending AGE-related diabetic complications. It is becoming clear that anti-AGE strategies may play an important role in the treatment of young and older diabetic patients. Several potential drug candidates such as AGE inhibitors have been reported recently.
The aim of the study was to compare the effect of short-term hyperglycemia and short-term hyperinsulinemia on parameters of oxidative stress in Wistar rats. Twenty male rats (aged 3 months, average body weight 325 g) were tested by hyperinsulinemic clamp (100 IU/l) at two different glycemia levels (6 and 12 mmol/l). Further 20 rats were used as a control group infused with normal saline (instead of insulin) and 30 % glucose simultaneously. Measured parameters of oxidative stress were malondialdehyde (MDA), reduced glutathione (GSH) and total antioxidant capacity (AOC). AOC remained unchanged during hyperglycemia and hyperinsulinemia. Malondialdehyde (as a marker of lipid peroxidation) decreased significantly (p<0.05) during the euglycemic hyperinsulinemic clamp, and increased significantly during isolated hyperglycemia without hyperinsulinemia. Reduced glutathione decreased significantly (p<0.05) during hyperglycemia without hyperinsulinemia. These results suggest that the short-term exogenous hyperinsulinemia reduced the production of reactive oxygen species (ROS) during hyperglycemia in an animal model compared with the control group., P. Kyselová, M. Žourek, Z. Rušavý, L. Trefil, J. Racek., and Obsahuje bibliografii
Several studies have shown that diabetes mellitus modulates heart resistance to ischemia and abrogates effectivity of cardioprotective interventions, such as ischemic preconditioning (IP). The aim of this study was to evaluate whether the effect of hyperglycemic conditions on the severity of ischemia-reperfusion (I/R) injury in preconditioned and non
-preconditioned hearts (controls, C) is related to changes in osmotic activity of glucose. Experiments were performed in isolated rat hearts perfused
according to Langendorff exposed to 30-min coronary occlusion/120-min reperfusion. IP was induced by two cycles of 5-min coronary occlusion/5-min reperfusion, prior to the long-term I/R. Hyperosmotic (HO) state induced by an addition of mannitol (11 mmol/l) to a standard Krebs-Henseleit perfusion medium significantly decreased the size of infarction and also suppressed a release of heart fatty acid binding protein (h-FABP – biomarker of cell injury) from the non-IP hearts nearly to 50%, in
comparison with normoosmotic (NO) mannitol-free perfusion. However, IP in HO conditions significantly increased the size of infarction and tended to elevate the release of h-FABP to the effluent from the heart. The results indicate that HO environment plays a cardioprotective role in the ischemic myocardium. On the other hand, increased osmolarity, similar to that in the hyperglycemic conditions, may play a pivotal role in a failure of
IP to induce cardioprotection in the diabetic myocardium.