Haemogregarina bigemina Laveran et Mesnil, 1901 was examined in marine fishes and the gnathiid isopod, Gnathia africana Barnard, 1914 in South Africa. Its development in fishes was similar to that described previously for this species. Gnathiids taken from fishes with H. bigemina, and prepared sequentially over 28 days post feeding (d.p.f.), contained stages of syzygy, immature and mature oocysts, sporozoites and merozoites of at least three types. Sporozoites, often five in number, formed from each oocyst from 9 d.p.f. First-generation merozoites appeared in small numbers at 11 d.p.f., arising from small, rounded meronts. Mature, second-generation merozoites appeared in large clusters within gut tissue at 18 d.p.f. They were presumed to arise from fan-shaped meronts, first observed at 11 d.p.f. Third-generation merozoites were the shortest, and resulted from binary fission of meronts, derived from second-generation merozoites. Gnathiids taken from sponges within rock pools contained only gamonts and immature oocysts. It is concluded that the development of H. bigemina in its arthropod host illustrates an affinity with Hemolivia and one species of Hepatozoon. However, the absence of sporokinetes and sporocysts also distances it from these genera, and from Karyolysus. Furthermore, H. bigemina produces fewer sporozoites than Cyrilia and Desseria, although, as in Desseria, Haemogregarina (sensu stricto) and Babesiosoma, post-sporogonic production of merozoites occurs in the invertebrate host. The presence of intraerythrocytic binary fission in its fish host means that H. bigemina is not a Desseria. Overall it most closely resembles Haemogregarina (sensu stricto) in its development, although the match is not exact.
Mabuya vitatta (Olivier) (Scincidae) and Agama stellio (L.) (Agamidae) were infected with Hemolivia mariae Smallridge et Paperna, 1997 by ingestion of tick viscera from Amblyomma limbatum Neumann, fed as nymphs on naturally infected Australian sleepy lizards, Tiliqua rugosa Gray. The unnatural infection apparently interfered with the developmental schedule of the parasites. Transmission electron microscopic images of merogonic stages were obtained, as well as images of early developing gametocytes. Tissue and intraerythrocytic meronts were bound by a hardened wall. Intraerythrocytic gametocytes were lodged in a parasitophorous vacuole, which was filled with granular material, and were bound by a two-membrane wall. Small and large osmiophilic bodies were located in a sub-pellicular position. With differentiation, the wall membranes tightened with the parasitophorous vacuole wall, and the osmiophilic bodies disappeared. The outer parasite membrane consolidated into a thick encasing with distinct sutures. Late infection in A. stellio comprised gametocytes only.