Pioglitazone (PIO) is a thiazolidindione antidiabetic agent which improves insulin sensitivity and reduces blood glucose in experimental animals and treated patients. At the cellular level the actions of PIO in diabetic heart are poorly understood. A previous study has demonstrated shortened action potential duration and inhibition of a variety of transmembrane currents including L-type Ca2+ current in normal canine ventricular myocytes. The effects of PIO on shortening and calcium transport in ventricular myocytes from the Goto-Kakizaki (GK) type 2 diabetic rat have been investigated. 10 min exposure to PIO (0.1-10 μM) reduced the amplitude of shortening to similar extents in ventricular myocytes from GK and control rats. 1 μM PIO reduced the amplitude of the Ca2+ transients to similar extents in ventricular myocytes from GK and control rats. Caffeine-induced Ca2+ release from the sarcoplasmic reticulum and recovery of Ca2+ transients following application of caffeine and myofilament sensitivity to Ca2+ were not significantly altered in ventricular myocytes from GK and control rats. Amplitude of L-type Ca2+ current was not significantly decreased in myocytes from GK compared to control rats and by PIO treatment. The negative inotropic effects of PIO may be attributed to a reduction in the amplitude of the Ca2+ transient however, the mechanisms remain to be resolved., K. A. Salem, V. Sydorenko, M. Qureshi, M. Oz, F. C. Howarth., and Seznam literatury
The skeletal muscles of animals and humans with type 2 diabetes have decreased oxidative capacity. Aerobic exercise can improve muscle oxidative capacity, but no data are available on the amount of exercise required. We investigated the effects of voluntary running exercise and running distance on the skeletal muscle properties of nonobese rats with type 2 diabetes. Six-week-old male diabetic Goto-Kakizaki rats were divided into nonexercised (GK) and exercised (GK-Ex) groups. The rats in the GK-Ex group were permitted voluntary running exercise on wheels for 6 weeks. Age-matched male Wistar rats (WR) were used as nondiabetic controls. Fasting blood glucose and HbA1c levels were higher in the GK and GK-Ex groups than in the WR group and lower in the GK-Ex group than in the GK group. Succinate dehydrogenase (SDH) activity and peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α) mRNA levels in the soleus and plantaris muscles were higher in the WR and GK-Ex groups than in the GK group. HbA1c and total cholesterol levels were negatively correlated with running distance and SDH activity and Pgc-1α mRNA levels in the soleus muscle were positively correlated with running distance. The onset and progression of diabetes in nonobese diabetic rats were effectively inhibited by running longer distances.