Ginkgo biloba L. is a large tree native in China with evolutionary affinities to the conifers and cycads. However unlike conifers, the gymnosperm G. biloba is not able to synthesize chlorophyll (Chl) in the dark, in spite of the presence of genes encoding subunits of light-independent protochlorophyllide oxidoreductase (DPOR) in the plastid genome. The principal aims of the present study were to investigate the presence of DPOR protein subunits (ChlL, ChlN, ChlB) as well as the key regulatory step in Chl formation: aminolevulinic acid (ALA) synthesis and abundance of the key regulatory enzyme in its synthesis: glutamyl-tRNA reductase (GluTR). In addition, functional stage of photosynthetic apparatus and assembly of pigment-protein complexes were investigated. Dark-grown, illuminated and circadian-grown G. biloba seedlings were used in our experiments. Our results clearly showed that no protein subunits of DPOR were detected irrespective of light conditions, what is consistent with the absence of Chl and Chl-binding proteins (D1, LHCI, LHCIIb) in the dark. This correlates with low ALA-synthesizing capacity and low amount of GluTR. The concentration of protochlorophyllide (Pchlide) in the dark is low and non-photoactive form (Pchlide633) was predominant. Plastids were developed as typical etioplasts with prollamelar body and few prothylakoid membranes. Continual illumination (24 h) only slightly stimulated ALA and Chl synthesis, although Pchlide content was reduced. Prollamelar bodies disappeared, but no grana were formed, what was consistent with the absence of D1, LHCI, LHCIIb proteins. Lightinduced development of photosynthetic apparatus is extremely slow, as indicated by Chl fluorescence and gas exchange measurements. Even after 72 h of continuous illumination, the values of maximum (Fv/Fm) and effective quantum yield (ΦPSII) and rate of net photosynthesis (PN) did not reach the values comparable with circadian-grown plants. and A. Pavlovič ... [et al.].
The effect of CO2 increase on gas exchange and water-use effíciency (WUE) in three temperate deciduous species (Fagus crenata, Ginkgo biloba and Alnus firma) under gradually-developing drought-stress was assessed. Seedlings were grown within transparent open-top cabinets and maintained for 4 monťhs at mean CO2 concentrations of either 350 (ambient; C350) or 700 pmol moT’ (elevated; C700) and combined with five water regimes [leaf water potential, higher than -0.3 (well- watered), -0.5 and -0.8 (moderate drought), -1.0 and lower than -1.2 MPa (serious drought-stress)]. Increase in CO2 concentration induced a 60 % average increase in net photosynthetic rate (P^) under well-watered conditions. The effect of C700 became more pronounced with drought stress established, with an 80 % average increase in at as low as -0.8 MPa; leaf conductance to water vapour transfer (gs) and transpiration rate (£), however, were significantly decreased. Consequently, WUE increased under drought, through drought stress affected potential E sooner than potential P^. The interaction of CO2 x drought stress on WUE was significant in that Pn was stimulated while E in C700 enriched plants resembled that of C350 plants under drought. Hence if a doubling of atmospheric CO2 concentration occurs by the mid 2U* century, then greater P^ in F. crenata, G. biloba and^. firma may be expected and the drought susceptibility of these species will be substantially enhanced.