We examine primitive roots modulo the Fermat number Fm = 2 2m + 1. We show that an odd integer n ≥ 3 is a Fermat prime if and only if the set of primitive roots modulo n is equal to the set of quadratic non-residues modulo n. This result is extended to primitive roots modulo twice a Fermat number.
In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo ph or 2ph for an odd prime p and h ≥ 1 an integer.
We assign to each positive integer $n$ a digraph whose set of vertices is $H=\lbrace 0,1,\dots ,n-1\rbrace $ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^2\equiv b\hspace{4.44443pt}(\@mod \; n)$. We establish necessary and sufficient conditions for the existence of isolated fixed points. We also examine when the digraph is semiregular. Moreover, we present simple conditions for the number of components and length of cycles. Two new necessary and sufficient conditions for the compositeness of Fermat numbers are also introduced.