The distribution of four alien Reynoutria taxa (R. japonica var. japonica, R. japonica var. compacta, R. sachalinensis and R. ×bohemica), native to East Asia, and history of their introduction to and spread in the Czech Republic was studied. The most widely distributed representative of the genus, R. japonica var. japonica, was first recorded in 1883 by A. Weidmann in cultivation in S Bohemia. The first record outside cultivation is from N Bohemia in 1902. Up to 2000, it has been recorded in 1335 localities, most frequently in riparian and human-made habitats. The dwarf variety R. japonica var. compacta is of a limited distribution that depends on rare cultivation and subsequent escape. The first herbarium specimen was collected in 1948 and the first record out of cultivation is from 1995. R. sachalinensis was recorded in 261 localities. It was first collected in 1921 in Central Bohemia. A herbarium specimen of a plant cultivated in the Botanical Garden of the Charles University in Prague, collected in 1950, has been re-determined as R. ×bohemica, the hybrid between R. japonica var. japonica and R. sachalinensis, and represents the earliest record of the hybrid in the Czech Republic. Since then, this taxon was observed in 381 localities. Herbarium records were used to compare the rate of spread among the three common taxa in 1952–1995, i.e. since when the hybrid started to appear in herbaria. R. japonica var. japonica has been spreading significantly faster than R. sachalinensis and the hybrid exhibits twice the rate of invasion of its parents.
Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis), which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100%) and nitrogen fertilization (0, 50, 100, 150 kg N ha-1). Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m-2 s-1 for well-watered plants, while the mean net photosynthesis was 9.1 µmol m-2 s-1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed) and 141 l (well-watered) per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg-1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop.