We solve the Dirichlet problem for line integrals of holomorphic functions in the unit ball: For a function $u$ which is lower semi-continuous on $\partial \mathbb{B}^{n}$ we give necessary and sufficient conditions in order that there exists a holomorphic function $f\in \mathbb{O}(\mathbb{B}^{n})$ such that \[ u(z)=\int _{|\lambda |<1}\left|f(\lambda z)\right|^{2}\mathrm{d}{\mathfrak L}^{2}(\lambda ).\].
We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \Bbb O(\Omega )$ such that $u(z)=\int _{\Bbb Dz}|f|^pd \frak L_{\Bbb Dz}^2$ for $z\in \partial \Omega $, where $\Bbb D=\{\lambda \in \Bbb C\:|\lambda |<1\}$.
We study the method of layer potentials for manifolds with boundary and cylindrical ends. The fact that the boundary is non-compact prevents us from using the standard characterization of Fredholm or compact pseudo-differential operators between Sobolev spaces, as, for example, in the works of Fabes-Jodeit-Lewis and Kral-Wedland . We first study the layer potentials depending on a parameter on compact manifolds. This then yields the invertibility of the relevant boundary integral operators in the global, non-compact setting. As an application, we prove a well-posedness result for the non-homogeneous Dirichlet problem on manifolds with boundary and cylindrical ends. We also prove the existence of the Dirichlet-to-Neumann map, which we show to be a pseudodifferential operator in the calculus of pseudodifferential operators that are “almost translation invariant at infinity”.
In this paper we investigate the existence of solutions to impulsive problems with a $p(t)$-Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem.
We investigate isometric composition operators on the weighted Dirichlet space {D_\alpha } with standard weights {(1 - {\left| z \right|^2})^\alpha },\alpha > - 1 . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space D. We solve some of these but not in general. We also investigate the situation when {D_\alpha } is equipped with another equivalent norm., Shi-An Han, Ze-Hua Zhou., and Obsahuje seznam literatury
The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type ∇ · ( ∇v ⁄ √ 1 − |∇v| 2 ) = f(|x|, v) in BR, u = 0 on ∂BR, where BR is the open ball of center 0 and radius R in R n , and f is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.
We investigate the existence and stability of solutions for higher-order two-point boundary value problems in case the differential operator is not necessarily positive definite, i.e. with superlinear nonlinearities. We write an abstract realization of the Dirichlet problem and provide abstract existence and stability results which are further applied to concrete problems.
We study the quasilinear elliptic problem with multivalued terms.We consider the Dirichlet problem with a multivalued term appearing in the equation and a problem of Neumann type with a multivalued term appearing in the boundary condition. Our approach is based on Szulkin’s critical point theory for lower semicontinuous energy functionals.
We investigate the spectral properties of the differential operator −r s∆, s ≥ 0 with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm ||u|| 2 L2,s(Ω) = ∫ Ω r −s |u| 2 dx, we study the structure of the spectrum with respect to the parameter s. Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous.
In this paper we consider the following Dirichlet problem for elliptic systems: $$ \begin {aligned} \overline {DA(x,u(x),Du(x))}=&B(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=&0,\quad x\in \partial \Omega , \end {aligned} $$ where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb {R}^{n}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_{0}^{1,p(x)}(\Omega , {\rm C}\ell _{n})$ under appropriate assumptions.