The study deals with activity of three antioxidant enzymes, copper, zinc-superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT) in hippocampus of rats, following the exposure to single chronic (individual housing or forced swimming) and acute (immobilization or cold) stress, as well as to combined chronic/acute stress. In addition, plasma noradrenaline (NA) and adrenaline (A) concentrations were measured in the same stress conditions, because their autooxidation can add to the oxidative stress. We observed that i) long-term social isolation and repeated forced swimming had minor effects on plasma catecholamines, but in the long-term pretreated groups, acute stressors caused profound elevation NA and A levels, ii) chronic stressors activate antioxidant enzymes, iii) acute stressors decrease catalase activity, their effects on CuZnSOD appear to be stressor-dependent, whereas MnSOD is not affected by acute stressors, and iv) pre-exposure to chronic stress affects the antioxidant-related effects of acute stressors, but this effect depends to a large extent on the type of the chronic stressor. Based on both metabolic and neuroendocrine data, long-term isolation appears to be a robust psychological stressor and to induce a “priming” effect specifically on the CuZnSOD and CAT activity.
Bretschneider (histidine-tryptophan-ketoglutarate) solution with its high histidine concentration (198 mM) is one of many cardioplegic solutions, which are routinely used for cardiac arrest. The aim of this study was to evaluate the physiological biochemical degradation of administered histidine to histamine and its major urinary metabolite N-methylimidazole acetic acid. A total number of thirteen consecutive patients scheduled for elective isolated coronary artery bypass grafting with cardiopulmonary bypass were enrolled in the prospective observational designed study at the Department of Thoracic and Cardiovascular Surgery between 04/2016 and 06/2016. Patients received 1.7 l Bretschneider solution on average. Before and at the end of operation as well as in the postoperative course, urine samples gathered from the urinary catheter bag were analyzed. During the operative period, urinary histidine concentration significantly increased from 29 μmol/mmol creatinine to 9,609 μmol/mmol creatinine. Postoperatively, histidine excretion reduced while histamine as well as N-methylimidazole acetic acid excretion rose significantly. Patients showed elevated levels of histidine, histamine as well as N-methylimidazole acetic acid in urine, but no unmanageable hemodynamic instability possibly arising from the histamine’s biological properties. Chemically modified histidine might reduce uptake and metabolization while maintaining the advantages of buffer capacity., J. K. Teloh, L. Ansorge, M. Petersen, E. Demircioglu, I. N. Waack, S. Brauckmann, H. Jakob, D.-S. Dohle., and Seznam literatury
Cushing’s syndrome is associated with typical central redistribution of adipose tissue. The aim of the study was to assess lipolysis and catecholamines and their metabolites in subcutaneous abdominal adipose tissue using an in-vivo microdialysis technique. Nine patients with Cushing’s syndrome and nine age-, gender- and body mass index (BMI)-matched control subjects were included in the study. Local glycerol concentrations were significantly increased in subcutaneous adipose tissue of patients with Cushing’s syndrome (p<0.001). Plasma noradrenaline, dihydroxyphenylglycol and dihydroxyphenylalanine were decreased in patients with Cushing’s syndrome (p<0.02, p<0.05, and p<0.02, respectively). Adrenaline, noradrenaline, dihydroxyphenylglycol and dihydroxyphenylalanine concentrations in subcutaneous abdominal adipose were non-significantly higher in patients with Cushing’s syndrome. In conclusion, we showed that lipolysis in subcutaneous adipose tissue of patients with Cushing’s syndrome is significantly increased as compared to healthy subjects. This finding together with non-significantly increased local catecholamine concentrations in these patients suggests a possible link between increased lipolysis and catecholaminergic activity in subcutaneous adipose tissue.
The present study was designed to measure interstitial levels of norepinephrine-regulating lipolysis (NE) in subcutaneous abdominal adipose tissue of anorexia nervosa (AN) patients and control subjects under basal conditions and after the local administration of an inhibitor of NE re-uptake, maprotiline. In vivo microdialysis technique was used to assess subcutaneous adipose NE levels in five women with AN (body mass index 14.62±0.47 kg/m2) and six age-matched controls (22.1±0.52 kg/m2). NE was assayed using high performance liquid chromatography with electrochemical detection after batch alumina extraction. Measured basal adipose tissue NE levels reflecting its interstitial levels were significantly increased in AN patients compared to the controls (106.0±20.9 vs. 40.0±5.0 pg/ml). The local maprotiline administration resulted in a significant increase in adipose tissue NE levels (AN patients: 440.0±28.6 vs. 202.0±33.0 pg/ml in the controls) in both groups. Markedly increased subcutaneous abdominal adipose tissue NE levels in AN patients compared to control subjects reflect increased sympathetic nervous system activity but not altered membrane noradrenergic transporter system in anorexia nervosa patients.