Let $M_{\beta }$ be the fractional maximal function. The commutator generated by $M_{\beta }$ and a suitable function $b$ is defined by $[M_{\beta },b]f = M_{\beta }(bf)-bM_{\beta }(f)$. Denote by $\mathscr {P}(\mathbb R^{n})$ the set of all measurable functions $p(\cdot )\colon \mathbb R^{n}\to [1,\infty )$ such that $$ 1< p_{-}:=\mathop {\rm ess inf}_{x\in \mathbb R^n}p(x) \quad \text {and}\quad p_{+}:=\mathop {\rm ess sup}_{x\in \mathbb R^n}p(x)<\infty , $$ and by $\mathscr {B}(\mathbb R^{n})$ the set of all $p(\cdot ) \in \mathscr {P}(\mathbb R^{n})$ such that the Hardy-Littlewood maximal function $M$ is bounded on $L^{p(\cdot )}(\mathbb R^{n})$. In this paper, the authors give some characterizations of $b$ for which $[M_{\beta },b]$ is bounded from $L^{p(\cdot )}(\mathbb R ^{n})$ into $L^{q(\cdot )}(\mathbb R^{n})$, when $p(\cdot )\in \mathscr {P}(\mathbb R^{n})$, $0<{\beta }<n/p_{+}$ and $1/q(\cdot )=1/p(\cdot )-\beta /n$ with $q(\cdot )(n-\beta )/n \in \mathscr {B}(\mathbb R^{n})$.
The boundednees of multilinear commutators of Calderón-Zygmund singular integrals on Lebesgue spaces with variable exponent is obtained. The multilinear commutators of generalized Hardy-Littlewood maximal operator are also considered.
In this paper, we are going to characterize the space ${\rm BMO}({\mathbb R}^n)$ through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space ${\rm BMO}({\mathbb R}^n)$ by using various function spaces. For example, Ho obtained a characterization of ${\rm BMO}({\mathbb R}^n)$ with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known John-Nirenberg inequality which can be seen as an extension to the variable Lebesgue spaces.
Given $\alpha $, $0<\alpha <n$, and $b\in {\mathrm BMO}$, we give sufficient conditions on weights for the commutator of the fractional integral operator, $[b,I_\alpha ]$, to satisfy weighted endpoint inequalities on $\mathbb{R}^n$ and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on $\mathbb{R}^n$.
Let $m$ be a positive integer, $0<\alpha <mn$, $\vec {b}=(b_{1},\cdots ,b_{m})\in {\rm BMO}^m$. We give sufficient conditions on weights for the commutators of multilinear fractional integral operators $\Cal {I}^{\vec {b}}_{\alpha }$ to satisfy a weighted endpoint inequality which extends the result in D. Cruz-Uribe, A. Fiorenza: Weighted endpoint estimates for commutators of fractional integrals, Czech. Math. J. 57 (2007), 153–160. We also give a weighted strong type inequality which improves the result in X. Chen, Q. Xue: Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362, (2010), 355–373.