The FERNET-C5 is a monolingual BERT language representation model trained from scratch on the Czech Colossal Clean Crawled Corpus (C5) data - a Czech mutation of the English C4 dataset. The training data contained almost 13 billion words (93 GB of text data). The model has the same architecture as the original BERT model, i.e. 12 transformation blocks, 12 attention heads and the hidden size of 768 neurons. In contrast to Google’s BERT models, we used SentencePiece tokenization instead of the Google’s internal WordPiece tokenization.
More details can be found in README.txt. Yet more detailed description is available in https://arxiv.org/abs/2107.10042
The same models are also released at https://huggingface.co/fav-kky/FERNET-C5
Model trained for Czech POS Tagging and Lemmatization using Czech version of BERT model, RobeCzech. Model is trained on data from Prague Dependency Treebank 3.5. Model is a part of Czech NLP with Contextualized Embeddings master thesis and presented a state-of-the-art performance on the date of submission of the work.
Demo jupyter notebook is available on the project GitHub.
RobeCzech is a monolingual RoBERTa language representation model trained on Czech data. RoBERTa is a robustly optimized Transformer-based pretraining approach. We show that RobeCzech considerably outperforms equally-sized multilingual and Czech-trained contextualized language representation models, surpasses current state of the art in all five evaluated NLP tasks and reaches state-of-theart results in four of them. The RobeCzech model is released publicly at https://hdl.handle.net/11234/1-3691 and https://huggingface.co/ufal/robeczech-base, both for PyTorch and TensorFlow.
Sentiment analysis models for Czech language. Models are three Czech sentiment analysis datasets(http://liks.fav.zcu.cz/sentiment/): Mall, CSFD, Facebook, and joint data from all three datasets above, using Czech version of BERT model, RobeCzech.
We present the best model for every dataset. Mall and CSFD models are new state-of-the-art for respective data.
Demo jupyter notebook is available on the project GitHub.
These models are a part of Czech NLP with Contextualized Embeddings master thesis.