We aimed to investigate the effects of brain-derived neurotrophic factor (BDNF) on apoptosis of intestinal epithelial cells (IECs) and alterations of intestinal barrier integrity using BDNF knock-out mice model. Colonic tissues from BDNF+/+ mice and BDNF+/- mice were prepared for this study. The integrity of colonic mucosa was evaluated by measuring trans-mucosa electrical resistance and tissue conductance in Ussing chamber. The colonic epithelial structure was analyzed by transmission electron microscopy. Apoptosis involvement was determined with TUNEL staining, active caspase-3 immunostaining and Western blotting for the protein expression of active caspase-3, Bax and Bcl-2. The expression levels and distribution of tight junction proteins were evaluated by immunohistochemistry or Western blots. Compared with BDNF+/+ mice, BDNF+/- mice displayed impaired integrity and ultrastructure alterations in their colonic mucosa, which was characterized by diminished microvilli, mitochondrial swelling and epithelial cells apoptosis. Altered intestinal barrier function was linked to excessive apoptosis of IECs demonstrated by the higher proportion of TUNEL-positive apoptotic cells and enhanced caspase activities in BDNF+/- mice. Increased expression of Bax and claudin-2 proteins and reduced Bcl-2 and tight junction proteins (occludin, ZO-1 and claudin-1) expression were also detected in the colonic mucosa of BDNF+/- mice. BDNF may play a role in the maintenance of intestinal barrier integrity via its anti-apoptotic properties., Dong-Yan Zhao, Wen-Xue Zhang, Qing-Qing Qi, Xin Long, Xia Li, Yan-Bo Yu, Xiu-Li Zuo., and Obsahuje bibliografii
The purpose of the present study was to investigate whether peripheral brain-derived neurotrophic factor (BDNF) treatment induced metabolic adaptations in mouse skeletal muscle. BDNF (20 mg/kg/day) was injected subcutaneously for successive 14 days. BDNF treatment significantly reduced the total food intake and inhibited the weight gain in comparison to the control group. The glucose transporter 4 (GLUT4) protein expression in the gastrocnemius muscle was significantly increased by BDNF treatment in comparison to the control and pair-fed groups. Neither the oxidative nor the glycolytic enzyme activities in the gastrocnemius muscle changed after the BDNF treatment. These results suggest that the peripheral BDNF treatment promotes the skeletal muscle GLUT4 protein expression as well as hypophagia., M. Suwa ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy