Activation of autophagy suppresses ovarian cancer (OC). This in vitro study investigated whether the anti-tumour effect of exendin-4 against OC involves modulation of autophagy and figured out the possible mechanisms of action. SKOV-3 and OVCAR-3 cells (1 × 105/ml) were cultured in DMEM medium and treated with exendin-4 in the presence or absence of chloroquine (CQ), an autophagy inhibitor. In some cases, cells were also treated with exendin- 4 with or without pre-treatment with compound C (CC), an AMPK inhibitor, or insulin-like growth factor (IGF-1), a PI3K/Akt activator. Exendin-4 increased expression of beclin-1 and LC3I/II, suppressed expression of p62, reduced cell survival, migration, and invasion, and increased cell apoptosis and LDH release in both SKOV-3 and OVCAR-3 cells. Besides, exendin-4 reduced phosphorylation of mTORC1, 6SK, 4E-BP1, and Akt but increased phosphorylation of AMPK in both cell lines. These effects were associated with down-regulation of Bcl-2, suppression of nuclear phosphorylation of NF-κB p65, and increased expression of Bax and cleaved caspases 3/8. Chloroquine completely prevented the inhibitory effects of exendin-4 on the cell survival, Bcl-2, NF-κB, and cell invasiveness and abolished its stimulation of cell apoptosis and LDH release. Moreover, only the combined treatment with IGF-1 and CC completely abolished the observed effect of exendin-4 on the expression of beclin-1, LC3I/II, p62, as well as on cell survival, apoptosis, and LDH release. Exendin-4 exhibits a potent anti-tumour cytotoxic effect in SKOV-3 and OVCAR-3 cells by activating the markers of autophagy, mediated by activation of AMPK and inhibition of Akt.
Skeletal muscle atrophy is associated with a loss of muscle protein which may result from both increased proteolysis and decreased protein synthesis. Investigations on cell signaling pathways that regulate muscle atrophy have promoted our understanding of this complicated process. Emerging evidence implicates that calpains play key roles in dysregulation of proteolysis seen in muscle atrophy. Moreover, studies have also shown that abnormally activated calpain
results muscle atrophy via its downstream effects on ubiquitin proteasome pathway (UPP) and Akt phosphorylation. This review will discuss the role of calpains in regulation of skeletal muscle atrophy mainly focusing on its collaboration with either UPP or Akt in atrophy
conditions in hope to stimulate the interest in development of novel therapeutic interventions for skeletal muscle atrophy.
The main aim of the present investigation was to verify the effects of three overtraining (OT) protocols performed in downhill (OTR/down), uphill (OTR/up) and without inclination (OTR) on the protein levels of Akt (Ser473), AMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4 as well as on the glycogen contents in mice gastrocnemius. A trained (TR) protocol was used as positive control. Rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to the performance evaluations), TR, OTR/down, OTR/up and OTR groups. At the end of the experimental protocols, gastrocnemius samples were removed and used for immunoblotting analysis as well as for glycogen measurements. There was no significant difference between the experimental groups for the protein levels of pAkt (Ser473), pAMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4. However, the OTR/up protocol exhibited higher contents of glycogen compared to the CT and TR groups. In summary, the OTR/up group increased the gastrocnemius glycogen content without significant changes of pAkt (Ser473), pAMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4., G. P. Morais, A. Da Rocha, A. P. Pinto, L. Da C. Oliveira, L. G. De Vicente, G. N. Ferreira, E. C. De Freitas, A. S. R. Da Silva., and Seznam literatury