Funkčnost a integrita komponent je omezena vznikem a rozvojem poškození. Související materiálový výzkum pracuje s mikrostrukturou a mechanickým chováním materiálu v blízkém okolí poškození, které posléze přerůstá v trhlinu. Mikrostruktura materiálu je obvykle zkoumána opticky nebo pomocí řádkovacího elektronového mikroskopu. Pro podrobné informace o mechanickém chování se nejčastěji používají optické metody. Použití mikroradiografie nám přináší možnost zkoumat mikrostrukturu i mechanické chování souběžně během zatěžovacího experimentu. Zároveň mikroradiografie dovoluje přímé pozorování vzniku a rozvoje poškození a trhlin., Daniel Vavřík, Jan Jakůbek, Martin Jakůbek, Tomáš Holý., and Obsahuje bibliografii
Nanobiophotonics is one of the most recent interdisciplinary scientific disciplines that originated at the frontiers of nanotechnology, photonics and biomedical sciences. The aim of nanobiophotonics is to transfer the medical diagnostics and therapy to the level of individual proteins and biologically active molecules, acting as cornerstones of the living cell. One of the key roles in its advancement can be attributed to the development of ultrafast pused lasers. These allowed to cross-combine spectroscopic, imaging and time-resolved methods and provide complex, multi-modal information about biological structures and phenomena on the nanometer scale. In our contribution we give an overview of the most important moments mapping the path from the discovery of the first laser to the current state of nanobiophotonic technologies in the world, and perspectives of this new scientific field in Slovakia., Nanobiofotonika je jedným z najmladších interdisciplinárnych vedeckých smerov, ktorý vznikol na pomedzí nanotechnológií, fotoniky a biomedicínskych vied s cieľom preniesť medicínsku diagnostiku a terapiu na úroveň proteínov a biologicky aktívnych molekúl - základných jednotiek živej bunky. Kľúčovú úlohu v jeho rozvoji má predovšetkým vývoj pulzných laserov s ultrakrátkymi impulzmi, ktoré umožnili prepojiť spektroskopické, zobrazovacie a časovo rozlíšené metódy a poskytujú dnes komplexnú multimodálnu informáciu o biologických štruktúrach a javoch na nanometrovej škále. V našom príspevku uvádzame prehľad vybraných významných momentov mapujúcich cestu od objavenia prvého lasera cez súčasny stav nanobiofotonických technológií k perspektívam tejto novej vednej oblasti na Slovensku., Dušan Chorvát ml., Alžbeta Chorvátová., and Obsahuje bibliografii
We have proposed a probabilistic quantum amplifier, which is capable of amplifyzing weak light signals in such a way that phase of the light is not only preserved, but its resolution is improved as well! Surprisingly, this "noise-free" amplification is achieved by addition of incoherent thermal noise followed by a photon subtraction scheme. The amplifier, which has been already experimentally implemented, might in the future become a valuable tool for quantum metrology of quantum communication., Petr Marek, Radim Filip., and Obsahuje bibliografii
Low-level laser therapy belongs to a group of interactions of laser radiation with living tissues and cells. The exact underlying mechanism of action at the molecular level as well as the exact relationships between laser radiation parameters (Wavelength, intensity, and dose) and wound healing process are still not known. In this review basic principals of low-level laser therapy from laser beam origin through radiation interaction with tissues to experimental and clinical studies are discussed., Martina Poláková, Róbert Kilík, Peter Gál., and Obsahuje bibliografii
An essential part of the ESFRI roadmap to foster the European science in the field of large laser systems, the project ELI-Beamlines is to be built in the Czech Republic. The project has been submitted by the Institute of Physics to the European Commision and it is expected to be financed from the structural funds just due. The facility, which consists of several laser beamlines delivering a very high power density (up to 1023 W/cm2) on the target in a repetitive regime, should be ready by 2015. A smaller sister-project HiLASE should support the ELI-Beamlines by providing high average power repetitive ns lasers as an intermediate pumping element of the ELI laser chains, but, at the same time, of interest for various laser assisted technologies. and Karel Rohlena.
The article describes fundamental and application results obtained in the Department of Quantum Electronics of the Institute of Radio-Engineering and Electronics (IRE) of Czechoslovak Academy of Sciences in Prague. The early success in detection of the Doppler effect of radiation reflected from the first satellite orbiting the Earth - Sputnik (1957) was in the Department followed by systematic work in the area of ammonia masers, both 14NH3 and 15NH3 (1963-72). Short information is given on the first graduate courses in quantum electronics (1963-64) organized by the Department. Department's program of laser development and applications is discussed in details. The results of four key research projects are reported in the article, i.e., (a) ruby laser and its application in ophthalmology (including the first laser surgery of retina carried out in our laboratory), (b) carbon dioxide IR lasers, (c) UV-Vis gas lasers (blue He-Cd laser, near-ultraviolet nitrogen laser), and (d) tunable dye lasers. Unfortunately, the politically motivated dissolution of the Department in early seventies ended all the promising programs., Jan Blabla, Viktor Trkal., Obsahuje bibliografii, and V anglickém názvu uvedeno chybně Quatum - správně = Quantum
The discovery of the ruby laser by Theodore Maiman in Malibu, CA on 16 May 1960, triggered extensive work around the world to make lasers. In the former Czechoslovakia, the first laser was successfully designed, built and operated at the Institute of Physics of the Czechoslovak Academy of Sciences in Prague. Karel Pátek (5. 5. 1927 - 25. 11. 1967), a distinguished research scientist working at the Department of Luminescence of the Institute, registered 1.06-μm laser action in an optically-pumped Nd:glass rod on 9 April 1963. Pátek's group studied a variety of different Nd3+ doped glasses using a number of experimental and theoretical techniques and, together with Jaroslav Pantoflíček at Charles University in Prague, obtained some valuable results in this area., První plně funkční protyp laseru byl v našich zemích vyvinut a uveden do provozu v dubnu 1963 ve Fyzikálním ústavu ČSAV díky Karlu Pátkovi (5. 5. 1927 - 25. 11. 1967), významnému badateli v oboru luminiscence pevných látek. V této stati představíme zmíněný laser a seznámíme čtenáře s pozoruhodným životem a dílem jeho konstruktéra., Luděk Vyšín, Libor Juha., and Obsahuje bibliografii
Polovodičový pixelový detektor Timepix je novým členem rodiny Medipix. Konstrukčně se Timepix neodlišuje od svého předchůdce, kterým je detektor Medipix2. Každý pixel detektoru je i zde vybaven předzesilovačem, diskriminátorem a čítačem. Čítač je však možno v každém pixelu nastavit do jednoho ze tří režimů. Prvním režimem (čítač) je prosté počítání částic. Druhý režim (časovač) umožňuje stanovit dobu detekce částice. V tomto textu se zaměříme na využití posledního režimu (Wilkinsonův AD převodník), který dovoluje přímé měření energie detekovaných částic. Tato vlastnost otevírá mnoho možností využití. V článku se budeme věnovat zejména aplikacím v oboru energeticky citlivé radiografie., Jan Jakůbek, Andrea Cejnarová, Stanislav Pospíšil, Josef Uher., and Obsahuje bibliografii
A sample from a photograph competition of award-winning shots taken through the mobile fluorescence microscope at the Faculty of Science Charles University in Prague, arranged by students of the Bedřich Schwarzenberg´s Forestry School, Písek. and Lenka Polanská.