The riparian forests along the Tarim River, habitats for Populus euphratica establishment, are subjected to frequent flooding. To elucidate adaptive strategies that enable this species to occupy the riparian ecosystem subjected to seasonal or permanent water-logging, we examined functional characteristics of plant growth, xylem water relations, leaf gas exchange, chlorophyll (Chl) content and fluorescence, soluble sugar and malondialdehyde (MDA) content in P. euphratica seedlings flooded for 50 d. Although flooded seedlings kept absorbing carbon throughout the experiment, their shoot and root growth rates were lower than in non-flooded seedlings. The reduced leaf gas exchange and quantum efficiency of PSII of flooded seedlings resulted possibly from the reduction in total Chl content. Content of soluble sugar and malondialdehyde in leaves were higher in flooded than in control seedlings. Soil flooding induced hypertrophy of lenticels and increased a stem diameter. These responses were responsible for species survival as well as its success in this seasonally flooded riparian zone. Our results indicate that P. euphratica is relatively flood-tolerant due to a combination of morphological, physiological, and biochemical adjustments, which may support its dominance in the Tarim riparian forest., B. Yu, C. Y. Zhao, J. Li, J. Y. Li, G. Peng., and Obsahuje bibliografii
Ecosystem photosynthetic characteristics are of utmost importance for the estimation of regional carbon budget, but such characteristics are not well understood in alpine regions. We collected CO2 flux data measured by eddy covariance technique over an alpine dwarf shrubland on the Qinghai-Tibetan Plateau during years 2003-2010; and we quantified the temporal patterns of ecosystem apparent quantum yield (a), saturated photosynthetic rate (Pmax), and ecosystem dark respiration (RDe). Results showed that the strong seasonality of a and RDe was driven mainly by air temperature (Ta), whereas that of Pmax was much more determined by leaf area index rather than abiotic factors. Diurnal thermal fluctuation inhibited significantly the daytime photosynthetic capacity. Stepwise regression revealed that the seasonal deviations of a, Pmax, and RDe were significantly controlled by Ta. The annual a was regulated mainly by annual growing season Ta, which indicated that the response of ecosystem a was instant. The annual variations of Pmax correlated positively with soil temperature 5 cm below ground (Ts) of the annual nongrowing season and those of RDe related negatively with the annual nongrowing season precipitation. We suggested that a lagged response regulated the annual Pmax and the annual RDe. Annual deviations of a and RDe were both significantly controlled by annual Ts, and those of Pmax were marginally determined by annual PPFD. Thus, the future warming scenario, especially significant for nongrowing seasonal warming in the Qinghai-Tibetan Plateau, would favor ecosystem photosynthetic capacity in the alpine dwarf shrubland., H. Q. Li, F. W. Zhang, Y. N. LI, G. M. Cao, L. Zhao, X. Q. Zhao., and Obsahuje bibliografii