$GMV$-algebras endowed with additive closure operators or with its duals-multiplicative interior operators (closure or interior $GMV$-algebras) were introduced as a non-commutative generalization of topological Boolean algebras. In the paper, the multiplicative interior and additive closure operators on $DRl$-monoids are introduced as natural generalizations of the multiplicative interior and additive closure operators on $GMV$-algebras.