1. A generalization of the finiteness problem of the local cohomology modules
- Creator:
- Abbasi, Ahmad and Roshan-Shekalgourabi, Hajar
- Format:
- bez média and svazek
- Type:
- model:article and TEXT
- Subject:
- local cohomology module, weakly Laskerian module, ${\mathfrak a}$-weakly Laskerian module, and associated prime
- Language:
- English
- Description:
- Let $R$ be a commutative Noetherian ring and ${\mathfrak a}$ an ideal of $R$. We introduce the concept of ${\mathfrak a}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak a}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak a}, H^i_{{\mathfrak a}}(M))$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$ and all $j$, then for any ${\mathfrak a}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak a}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak a},H^s_{{\mathfrak a}}(M)/X)$ is ${\mathfrak a}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak a}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak a}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak a}}(N)$ is ${\mathfrak a}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_{\mathfrak a}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).
- Rights:
- http://creativecommons.org/publicdomain/mark/1.0/ and policy:public