This package contains data sets for development and testing of machine translation of medical search short queries between Czech, English, French, and German. The queries come from general public and medical experts. and This work was supported by the EU FP7 project Khresmoi (European Comission contract No. 257528). The language resources are distributed by the LINDAT/Clarin project of the Ministry of Education, Youth and Sports of the Czech Republic (project no. LM2010013).
We thank Health on the Net Foundation for granting the license for the English general public queries, TRIP database for granting the license for the English medical expert queries, and three anonymous translators and three medical experts for translating amd revising the data.
This package contains data sets for development and testing of machine translation of medical queries between Czech, English, French, German, Hungarian, Polish, Spanish ans Swedish. The queries come from general public and medical experts. This is version 2.0 extending the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
This package contains data sets for development and testing of machine translation of sentences from summaries of medical articles between Czech, English, French, and German. and This work was supported by the EU FP7 project Khresmoi (European Comission contract No. 257528). The language resources are distributed by the LINDAT/Clarin project of the Ministry of Education, Youth and Sports of the Czech Republic (project no. LM2010013). We thank all the data providers and copyright holders for providing the source data and anonymous experts for translating the sentences.
This package contains data sets for development (Section dev) and testing (Section test) of machine translation of sentences from summaries of medical articles between Czech, English, French, German, Hungarian, Polish, Spanish
and Swedish. Version 2.0 extends the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
An interactive web demo for querying selected ÚFAL and LINDAT corpora. LINDAT/CLARIN KonText is a fork of ÚČNK KonText (https://github.com/czcorpus/kontext, maintained by Tomáš Machálek) that contains some modifications and additional features. Kontext, in turn, is a fork of the Bonito 2.68 python web interface to the corpus management tool Manatee (http://nlp.fi.muni.cz/trac/noske, created by Pavel Rychlý).
Statistical spell- and (occasional) grammar-checker. There are three versions: a unix command line utility and an OS X SpellServer with a System Service, that integrates with native OS X GUI applications, and a web service run by Lindat-Clarin, that can be used either through a web form in a browser, or by web applications using API. and The LINDAT-CLARIN project (LM2010013), fully supported by TheMinistry of Education, Sports and Youth of The Czech Republic under the programme LM of "Large Infrastructures"
Korektor is a statistical spell-checker and (occasionally) grammar-checker. It is released under 2-Clause BSD license http://opensource.org/licenses/BSD-2-Clause.
Korektor started with Michal Richter's diploma thesis Advanced Czech Spellchecker https://redmine.ms.mff.cuni.cz/documents/1, but it is being developed further. There are two versions: a command line utility (tested on Linux, Windows and OS X) and a REST service with publicly available API http://lindat.mff.cuni.cz/services/korektor/api-reference.php and HTML front end https://lindat.mff.cuni.cz/services/korektor/.
KUK 0.0 is a pilot version of a corpus of Czech legal and administrative texts designated as data for manual and automatic assessment of accessibility (comprehensibility or clarity) of Czech legal texts.
We present a large corpus of Czech parliament plenary sessions. The corpus
consists of approximately 444 hours of speech data and corresponding text
transcriptions. The whole corpus has been segmented to short audio snippets
making it suitable for both training and evaluation of automatic speech
recognition (ASR) systems. The source language of the corpus is Czech, which
makes it a valuable resource for future research as only a few public datasets
are available for the Czech language.
"Large Scale Colloquial Persian Dataset" (LSCP) is hierarchically organized in asemantic taxonomy that focuses on multi-task informal Persian language understanding as a comprehensive problem. LSCP includes 120M sentences from 27M casual Persian tweets with its dependency relations in syntactic annotation, Part-of-speech tags, sentiment polarity and automatic translation of original Persian sentences in five different languages (EN, CS, DE, IT, HI).