The data derived from rat models and the preliminary results of human studies provide strong indices of involvement of common ZBTB16 variants in a range of cardiovascular and metabolic traits. This cross-sectional study in the Caucasian cohort of 1517 Czech adults aimed to verify the hypothesis that ZBTB16 gene variation directly affects obesity and serum lipid levels. Genotyping of nine polymorphisms of the ZBTB16 gene (rs11214863, rs593731, rs763857, rs2846027, rs681200, rs686989, rs661223, rs675044, rs567057) was performed. A multivariate bidirectional regression with the reduction of dimensionality (O2PLS model) revealed relationships between basal lipid levels and anthropometric parameters and some minor ZBTB16 alleles. In men, the predictors - age and presence of minor ZBTB16 alleles of rs686989, rs661223, rs675044, rs567057 - were associated with significantly higher body mass index, waist to hip ratio, body adiposity index, waist and abdominal circumferences, higher total cholesterol and LDL cholesterol and explained 20 % of variability of these variables. In women, the predictors - age and presence of the rs686989 minor T allele - were also associated with increased anthropometric parameters and total cholesterol and LDL cholesterol but the obtained O2PLS model explained only 7.8 % of the variability of the explained variables. Our study confirmed that the selected gene variants of the transcription factor ZBTB16 influence the obesity-related parameters and lipid levels. This effect was more pronounced in men., B. Bendlová, M. Vaňková, M. Hill, G. Vacínová, P. Lukášová, D. Vejražková, L. Šedová, O. Šeda, J. Včelák., and Obsahuje bibliografii
One of the most abundant immunologic cell types in early decidua is the uterine natural killer (UNK) cell that despite the presence of cytoplasmic granules rich in perforin and granzymes does not degranulate in normal pregnancy. UNK cells are important producers of angiogenic factors that permit normal dilation of uterine arteries to provide increased blood flow for the growing feto-placental unit. Gram-negative bacteria lipopolysaccharide (LPS) administration can trigger an imbalance of pro-inflammatory and anti-inflammatory cytokines impairing the normal immune cells activity as well as uterine homeostasis. The present study aimed to evaluate by immunohistochemistry the reactivity of perforin and α-actin on UNK cell from LPStreated pregnant mice. For the first time, we demonstrate that LPS injection in pregnant mice causes α-actin down regulation, concomitantly with perforin loss in UNK cells. This suggests that LPS alters UNK cell migration and activates cytotoxic granule release., B. Zavan, A. M. do Amarante-Paffaro, V. A. Paffaro Jr., and Obsahuje bibliografii