Two light treatments [ambient sunlight (L1) during the entire growth period and 40% shade (L2) from 40 d after sowing until 24 d after flowering] and two phosphate fertilizer treatments [no phosphate fertilizer application (P0) and a conventional phosphate fertilizer application (P1)] were used to determine how phosphate fertilizer regulates soybean [Glycine max (L.) Merr.] photosynthesis under shading. We showed that phosphorus significantly increased chlorophyll content and grain yield under shading. The light-saturated net photosynthetic rate, apparent quantum yield, maximum electron transport rate, and maximum Rubisco carboxylation rate in P1 under L2 significantly increased. Moreover, phosphate fertilizer significantly improved the electron transfer and PSII reaction center performance under shading. Therefore, phosphate fertilizer increases low light-utilization efficiency by improving PSII performance, promoting ribulose-1,5-bisphosphate regeneration, ensuring a source of carboxylate substrates, and coordinating the balance between photochemical reaction and Calvin cycle under shading.
The oxygen-evolving complex (OEC) of Zostera marina is prone to deactivation under visible light, which results in a formation of the long-lived radical P680+. The mechanism to prevent damage caused by P680+ remains unclear. In this study, following light exposure, the upregulation in ascorbate (AsA) content and the presence of PSII cyclic electron flow (PSII-CEF) provide evidence that AsA and PSII-CEF donate electrons to PSII. Furthermore, a factorial design experiment with different combinations of inhibition of AsA and PSII-CEF demonstrates that both inhibition treatments lead to decreases in maximal photochemical yield of PSII, increases in relative variable fluorescence at the K-step, as well as the net loss of PSII reaction center proteins and further degradation of OEC peripheral proteins. These results suggest that AsA and PSII-CEF play photoprotective roles by providing electrons to efficiently prevent damage to PSII from the highly oxidizing radical P680+ in Z. marina.