A graph G is a k-tree if either G is the complete graph on k + 1 vertices, or G has a vertex v whose neighborhood is a clique of order k and the graph obtained by removing v from G is also a k-tree. Clearly, a k-tree has at least k + 1 vertices, and G is a 1-tree (usual tree) if and only if it is a 1-connected graph and has no K_{3} -minor. In this paper, motivated by some properties of 2-trees, we obtain a characterization of k-trees as follows: if G is a graph with at least k + 1 vertices, then G is a k-tree if and only if G has no K_{k+2} -minor, G does not contain any chordless cycle of length at least 4 and G is k-connected., De-Yan Zeng, Jian-Hua Yin., and Obsahuje seznam literatury